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GALOIS THEORY OF POWER SERIES RINGS IN 
CHARACTERISTIC p.* 

By TZOUNG TSIENG MOH. 

Introduction. 0. 1. Let kc be an algebraically closed field of clharac- 
teristic p, 7k[[t]] be a one variable power series domain over kc. One problem 
in algebraic geometry is to study some algebraic objects of k[[t]] and try to 
deduce from them useful data concerning the geometry of algebraic curves. 

In characteristic p= 0 case, such useful notions like saturation theory 
[2] and characteristic pairs [1] are constructed and give a complete classi- 
fication of singularities. In the p #0 case, no applicable generalization of 
the above notions are easily deduced. One of the main reasons for this is 
that only in the p = 0 case every finite algebraic extension is cyclic galois. 
These lead one to study the galois conditions in p #, 0 case. 

To analyze the galois condition of finite algebraic extensions, Professor 
Abhyankar observed the following: let kc be an algebraically closed field of 
characteristic p, and let i- be an kc-automorphism of k [ [t]] and x, y C Ic[ [t]i] 
with kc[[x]] =Ik[[y]], then ord(T(x) -x) =ord(i-(y) -y). Moreover, let 
r be an kc-automorphism of Ic[ [t]] of order p with ord (i (t) -t) =r, k [[x] 
be the fixed domain of r, and 

the differential multiplicity of x n= r (= ord (dx/dt) + 1). 

Without loss of generality, we can assume x = tP + Atm + higher terms. Since 
ord ( (tP) -tP) rp, and ord (r (x tP) - (x-tP) ) n- 1 + r, (x) x 
implies pr== rn-1 + r, i.e., r= (rn-i/p-1). In other words kc[[t]l is 
galois over k [ [x]] of degree p implies (n - i/p - 1) is an integer. The 
above fact observed by Professor Abhyankar indicates that there is a close 
relation between "differential multiplicities" and "galois conditions." One 
consequence of this is the variation of least galois extensions of the local 
ring of a plane algebroid curve of multiplicity p with respect to different 
transversal parameters. Namely, let c [ [t]] be the integral closure of the local 
ring 0 of a plane algebroid curve of multiplicity p, and let y, z be transversal 

* The work was supported by the National Science Foundation under NSF-GP-6388 
at Purdue University in partial fulfillment of the requirements for the Ph. D. degree. 
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920 TZOUNG TSIENG MOH. 

parameters of 0, the 7k[[t]] can be a cyclic galois extension over c [ [y] ] while 
it is not a galois extension over k [ [z] ]. 

Looking closely at the above fact observed by Professor Abhyankar, we 
were able to prove the converse of it (i. e., suppose x C 7c [ [t] ] with ord x = p 
and differential multiplicity of x = m = oo, then (p -1) I (m -1) implies 
k [ [t] ] is galois over k [ [x] ] ). 

To generalize the method used by Professor Abhyankar, we consider the 
element x At"t.P, + W/np,. A necessary and sufficient condition that there 
exists an kc-automorphism T of Ic[[t]] such that 

ord (Tr (X) -X) > min (ord (Tr (tmPv -tn'Pv) , ord (Tr (tnpk) _tnp,)) 

will be ord (T (tmPv) -tmPv) = ord (r (t'lp) -tnP"). we observe that 

ord(r(tmpv) - tJUPV) (n - 1 + r)pv and ord(Q,(tnpIL) - tnpk) (n - 1 + r) pg 

where r = ord (r (t) -t). Thus, (m- 1 + v)p ==(n1 + v) p, i.e., 
m"-nA mpv npL _ npA__ r == n + 1. The number mp - + 1 is of interest and later on 

PA PI, *pA pvP 

we find it is very useful in calculating kc [ [t] ]. We call it the " p-distance" 
<mp", npA> between mp" and npA. (See ?1. Definition 1). 

To generalize the notion of differential multiplicity, it is natural to 
consider "higher-differential multiplicity sequence (H. D. M. S.)." Namely, 
let ord x do and d1 be the order of the next term in x with exponent not 
divided by I do l; successively let d. be the order of the first term after tdi-L in 
x with exponent not divided by I di, 1. Then (do, d,, * , d,) will be called 
the higher-differential multiplicity sequence of x with respect to t. (See ?2. 
Definition 5). 

Now let us consider the case that H. D. M. S. of x (do, d1, d2), say 
x = Aotdo + Altdl + A2td2. Then a sufficient condition that there exists an 
automorphism r such that 

ord(T(x) -x) > min(ord(r(tdo) - tdo), ord(T(x Aotdo) - (x -Aotdo)) 

will be 
ord(r(tdo) - tdo) = min(ord(-r(tdL) - tdi), ord(r(t0) - 2)) 

i.e., r-=min(<do, d1>, <do, d2>) where r=ord(T(t) -1). These motivate 
us to give the definitions of G-character sequence [t, x] and sequence of pre- 
higher ramification indices [t, r]r (see ? 2. Definition 2 and Definition 3). 

Note that if x E Ic [ [t]] with ord x p and differential multiplicity of 
x =m M < co, then I. D. M. S. of x (p, m), 

[t,x] = (p, m) and [t,rx]n. - 1 
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POWER SERIES RINGS. 921 

It will be shown that the concepts introduced above are related to 
iHilbert's higher ramification theory (for the definition of higher ramifica- 
tions, see [3]). 

With above notions we prove: 

COROLLARY OF PROPOSITION 7. Suppose [t, x]lr (r,) and ord x = pP. 
Then lc[[t]] is galois over lc[[x]] if and only if r, is an integer. Moreover, 
if r, is an integer then it is the higher ramification index. 

Note that the "only if" part is a generalization of the fact observed 
by Professor Abhyankar. Quite naturally we wanlt to know what [t, x], 
indicates in general. The following proposition is a partial generalization 
of the proceeding proposition. 

PROPOSITION 7. If 7c[[t]] is a galois extension of algebraic degree pP 
over Ic [ [x]], then [t, x]r = sequence of higher ramification indices. 

Under the instruction of Professor Abhyankar we found that the converse 
of Proposition 7 was not true, namely, there exists x C k [ [t]] such that [t, x]r 
consists of two integers while Ic[[t]] is not galois over Ic[[x]]. At this time 
Professor Zariski suggested we study the following weaker problem: under 
what condition does these exist a y such that Ic [ [x]] C Ic [ [y] ] C Ic [ [t]] with 
lc[[t]] galois over Ic[[y]] ? 

Following this suggestion we were able to prove Proposition 5 after 
extensively studying p-distance. 

PROPOSITION 5. Suppose ord x =p, [t, x] = (ao,, ,,a) and [t, Xlr 

-(r, * *- , rn) is a sequence of integers. Then there exists a chain of power 
series rings 

k [ [t] I] 7C [ [Yo]I D k [ [Y1]D*** D 7k[ [Yn-i]] D 7k[ [Yn] I 7 [ [XI I 

such that 7k[[yi]] is a galois extension of 7k[[y+,]] with higher ramification 

i,ndex rt, and algebrcaic degree I a , 

To prove the converse we need Proposition 6 which is proved by using 
the technique of p-distance. 

PROPOSITION 6. Let kc[[t]] D c[[o[]] D Ic[[x]] be a chain of separable 
extensions of degree pv and p respectively. If [t,w]r and [0, Xlr are two 
sequences of integers then [t,X]r is a sequence of integers. 

Combining Propositions 5 and 6 we can state our main theorem: 
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922 TZOUNG TSIENG MOH. 

THEOREM. Suppose k [ [t] ] is a separable algebraic extension over k [ [x]i1. 
Then there exists a chain of successive galois extensions between k[[t]] and 
k[[x]] if and only if [t,x]r is a sequence of integers. 

0. 2. We wish to indicate the usefulness of the notions of [t, x], [t, x],. 
and the theorem. We shall do so by listing some applications and pointing 
out that some theorems concerning least galois extensions or saturation rings 
in p-extensions can be generalized to the case that [t, X]r consists of one 
number. Namely 

PROPOSITION 8 and COROLLARY. Suppose [t, x] - (pl, a,), [t, x]r-(r,), 
a1 I _ 1. Then the least galois extension over kl[[x]] containing kc[[t]] 

is tame over k[[t]]. Furthermore, the galois group is determined by the 
residue class of (al-1 ) mod (pv - 1). 

PROPOSITION 10. Suppose x, y C 7t[[t]], ordx pv, ordy =m, m > pv, 
m = 1 I, 0= k [[x,y]] and [t,x] = (r,). Then the saturation ring 0, of 0 

with respect to x is 0 + M + Mm where M = tk [ [t] ] and b runs through 
all integers less than m with <b, m> ? r,. 

For the purpose of application, Professor Abhynakar pointed out the 
following proposition. 

PROPOSITION 9. Suppose ord x - pv. If [t, x], = (ri, * * , r.) is a 
sequence of integers, then the least galois extension of k [ [x]] containing 
k[[t]] is purely wild, i. e., the corresponding algebraic degree is pgt for 
some /A. 

Concerning saftration, we have Proposition (see 

COROLLARY Of PROPOSITION 10). Suppose 

zEC 0=1k[[x,y]] ordz=ordx-pv, 

and ord y =m > pv, I m Im=1, [t, x] (r1) [t, z] (s1). If s? > r, then 
0,COz. Furthermore, if v = 1, then 0 0 +f M. While in general 
0, OZ. 

It follows from above that if G-character sequences are different, then 
the saturation could be different with the same least galois extension and the 
same galois group. 

0. 3. In the remainder of the introduction we shall describe the content 
of each section. 
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POWER SERIES RINGS. 923 

In ? 1, we give the definitions of p-absolute value and p-distance and 
write down the basic properties of p-distance. 

In ? 2, we give the definition of [t, x], and two equivalent definitions of 
the notion "standard expression" (Definition 4 and Proposition 1) which 
are useful afterwards. To finish ? 2 we show that [t, x]r is a monotoic 
increasing sequence and all notions such as [t, x], [t, x], and H. D. M. S. are 
functions of a pair of fields k [ [t]], [ [x]], i. e., they are independent of 
the basis chosen for t [ [t] ] and s [ [x] ]. 

In ? 3, Lemmas 11, 12, and 13 are technical lemmas to prove Proposi- 
tion 3. Lemma 14 is the essential part of the proof of Proposition 4. Com- 
bining Proposition 3 and 4, we get the sufficient part of the theorem and 
Proposition 5. Lemma 15 is the essential part of the proof of Proposition 6. 
Proposition 6 and Lemma 16 consists of the necessary part of the theorem. 

In ? 4, we prove Proposition 8 and Proposition 9 about least galois 
extensions. 

In ? 5, we discuss saturations. Proposition 10 will give a complete 
description of saturations if the G-character sequence consists of two elements. 

1. p-Distance. 

DEFINITION 1. If a is a positive integer, then we define the p-absolute 
value of a, denoted by a or I a |, as 

|a I a |P max{p;: pv I a}. 

If a and b are positive integers with a < b, then we define the p-distance of 
the pair a, b, denoted by <a, b>, as 

<a,b> oo if i a ttb 

<a, b> 
b a -b+ 1if I a I> Ib 1 

In the remaining part of this section, we will prove several lemmas con- 
cerning the properties of p-distance which will later be useful. 

LEMMA 1. Suppose a < b < c. Then 

1) <a, b> 74 <b, c> implies <a, c> > min (<a, b>, <b, c>) 
2) <a, b> <b, c> implies <a, c> ==-min (<a, b>, <b, c>). 

Proof. 

10 
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924 TZOUNG TSIENG MOH. 

1) Consider the case <a, b> 74 <b, c>. If <a, c> =oo, then the inequality 
is obvious because either <a, b> or <b, c> is finite. If, on the other 
hand, <a, c> <oo, i. e., I a > I c 1, we consider the following three 
situations: 

a c | |bl ,) 1 b |a y | c |< I b < I a; 

as) c b > I implies I a I> b . 
Thus since c- a > b -a and a l cl? a b Ibj then 

<a,c> > <a,b>. 

I) |b|' Ic . 
Since c-a > c-b and I a |-lc l? b I c then 

<a,c> > <b,c>. 

I c < I b I < I a . We consider the following two situations A), B). 

A) If <a,b> > <b, c>, i. e., 
b a > 

c 
b_then 

Ia jIb bj- I then 

(b-a) + (c-b) c-a c- b 
(ja l-lbl)+(Ibl- c )jajl- c b I - I c I 

B) If <a,b> <<b,c>, i.e., b- a < cb then 
Ia I-jIb < lb I- IcI 

(b-a) - (c-b) c-a > b -a 
(a |- bI) + (Ib I - Ic ) a c I | a I - I b 

2) In the case <a, b> = <b, c>, we consider the following two situations: 

x) <a,b> <b,c>=oo ) <a,b> <b,c> < oo. 

a) <a,b> <b,c> oo. 

Since a I I b I I c 1, then <a, c> =00. 

/3) <a,b> <b,c> <oo implies Ia I > I b I > I c I and 

b -a c-b c-a (b-a) + (c-b) 
IaI-Ib I b I c ' 

then Ia - c (ja Ib) + ( b - ct) 

cb 

Q.E.D. 
Using Lemma 1 repeatedly, we can prove the following lemma. 

LEMMA 2. Given a < b, < b2 < * . . < b < cthen 

<a, c> _ min (<a, b>, K<b1, b2> . . <ba, c>). 

This content downloaded from 128.163.2.206 on Wed, 1 Jan 2014 23:09:35 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


POWEPR SERIES RINGS. 925 

The equality holds if and only if <a, b,> = <b, b2> = <bn, C>. 

LEMMA 3. Suppose a < b < c. Then 

1) <a, b> > <a, c> implies <a, c> > <b, c>. 
2) <a, b> = <a, c> <oo implies <a, c> = <b, c>. 

Proof. 

1) By Lemma 1, <a, c> > min(<a, b>, <b, c>). 
Since <a, b> > <a, c>, then <a, b> > <b, c>. 
By Lemma 1 again, <a, c> > <b, c>. 

2) <a, b> <a, c> < oo implies b - a c-a 
Ial-I b = lal-IjcI 

Thus since c-a> b-a, |a I-Ic > a I-lb , then 

b-a (c-a)-(b -a) c-b 
I a I- b (ja - - I c )-(I a - I b )jb I - c 

and c > b, b I > I c l. Hence <a, b> <a, c> <b, c>. 

LEMMA 4. Suppose a < b < c. Then <a, b> < <b, c> <oo implies 
<a, c> < <b, c>. 

Proof. <a,b> < <b,c> <oo implies b a < c and 

IaI > IbI > IcI. Thus since 
c-a (b-a) +f(c -b) c-b 

a a cI (I a I -b )+ (I b b c I) <|b- cK 
then <a,c> < <b,c>. 

LEMMA 5. Suppose a < b < c. Then <a, b> < <a, c> <oo implies 
<b, c> > <a, c>. 

Proof. We consider the following two situations: 1) <b, c> = oo, 2) 
<b, c> < oo. 

1) <b, c> - oo implies <b, c> > <a, c>. 
2) <b,c> <oo implies I a I > I b I > I c Thus since 

b a c- a then 
I a I-I b I < a j- c I 

(c-a) -(b -a) c-b c -a 
(Ia- I c) -(lb I -a-) Ib-I -I C| I aI I c 

i. e., <b, c> > <a, c>. 
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926 TZOUNG TSIENG MOH. 

LEMMA 6. Suppose a < b < c. Then <a, c> > <b, c> implies <a, b> 
> <a, c>. The equality holds only if <a, b> =oo. 

Proof. It is clear that <a, b> = oo implies <a, b> > <a, c>. Suppose 

<a,b> <oo, then since I a > I b j> I c and <a,c> <oo, thus c-a 
c-b~~~~~~~~~~~~~~~~~~ 

> 
c 

b I-lot which implies 

(c-a) -(c-b) b -a c-a 
(|a - c |)-( b -c I) a I b - > I a - - c I' 

i. e., <a, b>> <a, c>. 

LEMMA 7. Suppose a < b < d, a < c < d. Then <a, b> > <a, c>, 
<b, c> > <a, c> and I b I > c I implies <c, d> ? <b, d>. The equality holds 
if and only if <b, c> oo. 

Proof. The lemma is clear if <c, d> = oo. We can assume <c, d> <oo, 
i.e., cI>| di. From our assumption that I a I > I, ibi >0Ic Now 
we consider the following two situations: 1) I b _ a > c > d , 2) 
|a |> I b |> I c > I d 1 . 

1) IbI?IaI>Ici>Id implies d-a>d-b 

ia l-d ib l-ldI. Thus oo > <a, d> > <b, d> > <a, c>. Then 

d-a d-b c-a 
a- d >t bt -d > at-tc 

implies 

d -c (d-a) -(c-a) 
c t-Id (|a |- d) (I a -I c) 

d-a d-b 
>|Ia| Id >Ib| Id 

2) IaI>ibi>icl>Idl. 

Since oo > <a, b> > <a, c>, then 

b-a c-a 
at-tb > - a Cj 

which implies 

d-b db-td 
|b I - dI 
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POWER SERIES RINGS. 927 

(d-a) - (b -a) (d-a) - (c-a) 
(a - dI )-( a b I) ( a d )-(1a I -I d 1) 

d-a 
= c I-I d 

i.e., <c, d> K <b,d>. Q.E.D. 

2. The standard expression and 0-character sequence of a non-zero 
non-unit element in k [ [t] I. In the rest of the paper let kc be an algebraically 
closed field of characteristic p #Z 0, kc [ [t] I be a powerseries ring of one 
variable over 7k, x be a nonzero non-unit element in kc [ [t] I, and 

suppt x-supp x {i E Z I x = ajti, aj O}. 

We make the following definition: 

DEFINITION 2. Suppose x C kc [ [t] I with 0 < ord x < oo. We define 
[t,x], the G-character sequence of x (with respect to t), as 

[t, x] = (ao, a1, a2, , an) 
where 

ao = ord x 
a1 = Iax{i C supp x I <ao, i> = Min<ao, j>, j C supp x with j > ord x and 

i > ord x}. And in general for 0 < s < n 

a, = Max{i C supp x I i > a,-1 

<as81, i> = Min<as-,p j>, j C supp x, with j > as-1}, 
<an,i>= oo iC suppx with i>an. 

DEFINITION 3. Suppose xC Ek [[t]] with 0 < ordx <oo, 

[t, x] = (ao, alp a2p . . . 
an) 

We define [t, x]r, the pre-higher ramification indices sequence of x (with 
respect to t), as 

[tp XI r =:(ri, r2p . . . 
rn) 

where 
r= <a,-, al>. 

DEFINITION 4. Each x has a unique expression of the form 

X=Xo+X,+. * *+Xn 

with 
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928 TZOUNG TSIENG MOH. 

1) ord x=-ai where (a,, a,, * a.) - x 
2) deg xi < ord x+1. 

We call such an expression of x the standard expression of x with respect to t. 

We next give another characterization of the standard expression of x. 

PROPOSITION 1. The standard expression of x is x = x0 + x1 + * + xn 

if and only if 

1) ord xi+1 > deg x 
2) xj:O0 
3 ) <ord xi, a> > <ord xi, ord xi+1> a C supp xi with a > ord xi 
4) <ordxn,a> oo aCsuppxn with a>ordxX 
5) oo > <ord xi, ord xi+,> > <ord xj_, ord xi>. 

Proof. ? It suffices to prove 

<ord xi, j>> <ord xi, ord xi+,> 

for each j C supp x with j > ord xi+1. 

Let j C supp xi+, where i + 1 ? i +s n. Using Lemma 2 and con- 
ditions 3) and 5), we conclude <ord x, j> > <ord xi, ord xi+,>. 

> 1), 2), 3), 4) are obvious from the definitions of [t,x] and the 
standard expression. From the fact 

oo > <ord xi, ord xi+,>> <ord x41, ord xi> 

and Lemma 5 we deduce 

oo > <ord xi, ord xi+,>> <orw xi-,, ord xi> 

which proves 5). 

Given x C kc [ [t] we associate with x another sequence of numbers, the 
higher differential multiplicity sequence (H. D. M. S.), defined as follows:: 

DEFINITION 5. Given any positive integer i, let 

ord x mod R I max{ord y I y C x + Rh} 
where 

x C R == kfftfl 

The higher differential multiplicity sequence (H. D. M. S.) of x is 
given by: 

H. D. M. S. == (dO, d1, , dS) 
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POWER SERIES RINGS. 929 

where 
do=ordx 
d= ord x mod RB11 

d= ord x mod RBll-il 

d8 = ord x mod Rids-tl 
and 

ordxmod lsl oo 

Remark. di min{j j C supp x with j I < |di}. 
Using the notion of the higher differential multiplicity sequence, we will 

give another way of calculating the G-character sequence. 

PROPOSITION 2. Suppose x C ke[ [t]] with 0 < ord x < oo. Let 

(ao, aL, . . , an) 

be the G-character sequence of x with respect to t and let (do,d, *d *dn) 
be the higher differential multiplicity sequence of x with respect to t. Then 

1) aO do 
2) ai max{dj I dj > ai1 with <a,+,, dj> = min<aF1, dk>}. 

Proof. Let a C supp x with a > a-1. Suppose aj1 < dk < a < d7l and 
<aS, a> < oo. Then I ai1 I > I a |, which implies a,- < dk. By the definition 
of H. D. M. S. we have I a I > I dk , hence <ai,1, a> > <ai-,, dk>. This means 
<a,,, a> can not assume the minimumi value. 

LEMMA 8. Suppose a is a positive integer, and x C kl[ [t]] with ord x 0, 
0o. In addition, let H. D. M. S. of x = (do, d,,* d) and [t, x] = (ao, * an). 
Then H. D. M.S. of 

Xa <- (ado, 
. 

.*, (a |a|)do+ja|dt,-p * ,( a-ja)do+jajd,), 

[t,] =(aao0 - *, (a- aj)do +j IaIaj,. . . , (a- I a I)ao a -I a I a) 
and [t, x]r = [t, x]r. 

a 

Proof. Using the remark after Definition 5 and xa - (xia) lal, it is easy 
to prove the statement about H. D. M. S. of eG. Since 
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<ado, (a- Ia)do+ Ialdi> 

l a l d, I a I do+ado-ado 1 
I IaId |-IaI do+ad,I + Iadol+ 

- a | d0 | a j do lal di| lal dol +1 

di, do 
I do I- di +1 

<do, d,>, 

the statements about [t, xa] and [t, x], [t, xa]l are clearly true. Q. E. D. 

LEMMA 9. Given kI[[t]] D kI[[x]] with ordx 0, oo if k[[t]] 
k[[t']], kI[[x]] =-k[[x']], then H. D. M. S. of x with respect to t H. D. 

M. S. of x' with respect to t' and [t, x] = [t', x']. 

Proof. In view of Proposition 2, it is enough to prove the statement 
about H. D. M. S. 

Since H. D. M. S. is defined relative to the notion of ord x mod RI I which 
is independent of the base chosen for R = k [ [t] ] then H. D. M. S. is also 
independent of the base. Therefore, let us assume t t' and let 

x' AOX + * * Ajxj + **,0O 

H. D. M. S. of x (dop d, *, d . . . ) 
and H.D.M.S. of x' (dop d'1, . ,d't, ), 

clearly do = ord x = ord x'= d'o. Now assume di = d', for some i. 

From the remark following Definition 5, d,+1 = min{j I j C supp x 1j 
< d }. In addition 

min{j I jC suppx[l I j| < I di (}= | ,I)do+ I It di+, > dz+lp > 1. 

Here 
d'j+1 Min{j j C supp x', j| < I di} 

min{j j E suppxAox, i j < I 64 I} 
di+1. Q.E.D. 

From Lemma 9, we conclude H. D. M. S. [, ], [, ]r are functions of 
a pair of fields. 

LEMMA 10. r, < r, < < rn 
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Proof. By the definition of ai, <a,, ai+2> > <aj, aj+j> r +j. Hence by 
Lemma 5 

<a,+j, ai+2> = ri+2 > <ai, a,+1> =r+, 
Q. E. D. 

3. G-character sequences and sequences of Galois extensions. Note 
that if v- is an k-automorphism of finite order of k [ [t] ], then it can be 
deduced that ordr== p iff ord(-(t) -t) > 1, i.e., 7(t) =t +E X1tt. 

j>1 

LEMMA 11. Given T of finite order pI such that r(t) t + N Ati, and 
i>1 

a > 0 an integer, we have 

T(ta) = (r(t) )a =ta + Ntit 
i>a 

where 
0 if I i ]< a 1, if I i a 

then 

a ~a 
aAl a +h1A2, 

*a 
a a I a | a 

with hi a universal polynomial over k determined by a. 

Proof. For any xC Ek[[t]], xial E lc[[tIaI]]. Hence p O i lt < tat. 
a 

We know that 1) r(t)a [a(t) Ial] lal and 2) raising any element of 
k [ [t] ] to a power pV is equivalent to raising every term to the power pv, i. e., 
(a. + alt + a2 t2 + . = . )P aoP' + a,P'tPv + a2 Pt2pV + - . It is enough to 
prove the lemma for the case I a | 1, which is the classic characteristic 
zero case. 

In the expression r(t)a consider the coefficient of the term of degree 
a 1 + j, we observe that it contains the term aXj, and it does not contain 
any term with factor Ak for k > j, or any term with factor AjAk for k > 1. 
Hence 

i+a-i+j =- aXj + ha,.1+j (A2, . . , Aj1 ) 

Let i=a a-1+j, then j=i-a+1 and 

pq s aXt-a+l + h (X25 
. . .*, A+-a) 

It is routine to check that hi is a universal polynomial. This proved the 
lemma. 
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Remark. hi(O,O, ,O) ==O. 

Let x E k [ [t]] ord x 0, oo, k [ [t]] be a separable algebraic extension 
of degree pv over kc[[x]], [t,x] = (ao,a,, * *,a,). [t,x]7- (r1, * ,r.)- 
I. D. M. S. of x= (do, d,* *,d), and xx- xo + * * * + x, is the 
standard expression of x. 

LEMMA 12. <a, a,> < r. V a C supp x - x -x1. 

Proof. Let a E supp xi such that a> ord xi for some i <n- 1, then 
<ord xi, a> > Kord xi, ord xi+,>. By Lemma 3, a ? ord xi implies 

<a, ord xi+,> ? <ord xi, ord xi+,> < < ord xj+,, ord xi+2>. 

Hence by Lemma 4 

<a, ord xi+2> < <ord xi+,, ord xi+2> <ord xi+,, ord Xi+3>. 

Repeating this argument several times, we conclude 

<a, an> < <ord x,-, x.> == r.. Q. E. D. 

LEMMA 13. Let j an j =1 and let T- be an automorphism of finite order 
pv of k[[t]]; say 

r(t) =t+ ,At x 77yti 
i>1 

,r(x)->et 

Then Vi i: i- a + 1 > r", , = -an,q7a+j + hi ( ,&2** X,'an) + - where - 

is the coefficient of ta in x and hi is a universal polynomial over k determined 
by x. 

Proof. Let r (ta) =( (r(t) )a+ p /a,iti, then 
i>a 

/Xi =?7lqalAa,i + qi >a 
By Lemma 11 

|a,_a| _ a a 
+ha,iI[X2y . . a 

tat IaI latH a 
Assume i is such that i -an + 1 > r", for a C supp (x-xn-x1), 

Lemma 12 implies 

I a 

and for a E supp x$a, Lemma 3 implies 

-an+ 1 > <a, a.> 
a -a + 1. 
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H:ence i -an + I > 
t 

a_ + a ifa a C supp x xn. This implies 

i(Ia I ,) >aIa I-a 

R - la ] lal 
i a a 

Next let a C supp xn and a > an; then it is clear i- a < i -an. Thus 
we conclude JUa,i is a polynomial in A2, * X,-an if a C supp x\a". Also from 
Lemma 10 

=aan ~ qnawa+l + hanji[A2, Xi-an]j 

Hence 
jU^i -qatcah, i + 77i =- a4a.+, + hi [X2, . . . n Xan] + X 

Remark. hi(0, O, * *, 0) = 0. 

PROPOSITION 3. If rn is an integer, then there exists an abelian group 
Gn of automorphisms of k[[t]] with (only one) higher ramification index 
rn and of order w a h which fixes x. 

Proof. 

1) Since ordx x p, any automorphism v- with the property 
ord(T(t) -t)=- 1 cannot fix x. 

Let i- be an automorphism such that ord(T(t) -t) =r> rn, then by 
Lemma 13 

ILr+a1,,-l - aXAr + yi 

and hence T(x) 7x. 

2) Let T (t) = t +? AXt be an automorphism which fixes x, and let 
i?rn 

x E Diti. 

By Lemma 13 

-qi r-nanXv-an+l + hi [A2n ***Xi-an] + i Vi 3 : i-an + 1 > rn. 

Hence for i i > rn+ an 1, A4 satisfies 

-qaAi + h+an-, [X2, . * 0 .-1 . ? 

By Lemma I1 and the remark following it, ord(r(ta) ta) =a- tat 

+r rn I a I and the leading form of (T (t) ta) is XrnIaIta-iaI+rnia. If 

This content downloaded from 128.163.2.206 on Wed, 1 Jan 2014 23:09:35 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


934 TZOUNG TSIENG MOH. 

aC supp(x- X -Xn-1), we have by Lemma 12, 

a. > <a, an> =-an 
a 

_l+ 1 => I a I r,, rn > an -a + I a 

a> j a I +-rn aI a > rn+ an-1 

If a C supp x., a > an-, and I a ? >- a,, I then <an, a> oo. By Lemma 3 
it follows that <a, a,> < <a-,, an> = r, hence by the same reasoning as in 
the case of aE x -x1,, a - Ia I +rn a I > r+an -1. If aE suppxn and 
a > a,, then it is obvious that a aI+ rIn a I > rn + an -1. Finally we 
note that while 

ord (r(t -) t11--l) an,> an-, + r. I an-,=- r. + a. 
=ord(r(ta-) -Pan) =ord(T(ta) ta) VaE suppxj1 :<anj,a> rn. 

Hence 

an- 1 X,kja._jj 'q'+a-L XIa-n-iIan-1 
rlx1 + ... 

+ -qa ajXr. I * + 7)a/iaArn + -qr.+a,1-, 

where a E supp (xn1) with <a,1, a> = r", a> a,1. Thus Xr. satisfies 

'qan-1 an- I 4s an11 + + a |a l Arl I+ + -qa.Ar. ?; I an-,t XnIalII* a I\r!! 

this is a separable equation with exactly j j solutions since j j > j a j > 1. 
3) Conversely, take Xr. which satisfies the above equation. Then 

there exists a unique sequence { , Azy } which satisfies 

-7a24 + hi+an-l [A2< **s-1] 0. 

Moreover the automorphismn - defined by 

7(t) =t + A'tv 

fixes x. By 1) these I a- I different elements form a group of higher ramifi- 
cation index r,. Q. E. D. 

LEMMA 14. Given 0 < r1 < r2 < K . . r1, r, real number, 0 <a0 
<a1< aj, at integer, m1 E* , 7Ck and <aj, aj+1> r1+. Let 
y,xCk[[t]] such that ordy,ordz#O, 0o, [t, ZIr (r,, ), r,1,>r 1 and 
ord(y- z) > ord(y). 

If y satisfies the following conditions 
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1) a C supp(y), ai < a-_ aj+1 <aj, a> > ri-i 
a C supp (y), an-, < a = <an-i, a> > rn-1 and; 

2) a, E supp (y) and i is the coefficient of t"a of y ai ? ord y. 

Then y -z satisfies 1) and 2) and ord(y -z) ? ai if ordy < a. 

Proof. 

Case A. ordy =ordz?a,1. 

Since supp (y - z) C supp y U supp z condition 1) is satisfied, while 
2) is trivially true. 

Case B. ordy ordz =a<a,a1. 

Suppose a C supp z with a + ord z and a8 ? a < a,+1 : a1. We note that 
<aj, a> = o0 <as-1, a> oo, i. e., a 7 a., hence we may assume <aj, a>'< oo. 
Moreover since <ai, a> ? rn > rn-1 > <aj, aj+1>, Lemma 5 implies <ai+1, a> > rn-1. 

Repeating this argument we find that <a,,, a> > rn1 ? r8 <a,,, a,>, i. e., 
a 7 a, and <a,, a> > r_1 ? r8+1. Hence the first part of 1) is satisfied since 
supp(y -z) CsuppyUsuppz. Also a, supp(z) a,>ordz; thus 2) is 
satisfied. Now suppose a C supp z and a > an-1. Since <ai, a> rn > rn_l, 
repeating the same argument it follows that <a,,, a> > rn-l. We conclude 1) 
is satisfied completely. 

Case C. ai < crd y ==ord z < ai+i?_ an-,. 

Since <ai, ord y> ? <aj, ai+,> = ri+1 by 1), it follows from Lemma 3 that 
<ord y, a,+,> - <aj, a1+1>. Suppose a E supp z, a,? a < a,,1 ? a..- and a 7 ord z. 
Since <ord z, a> ? rn > rn- ? <ord z, a1+1>, and 

<ord z, a>= oo > I ord z t C ] a I j> I a I > I a,+ I t I at > I a8 => <a,, a> oo0, 

i. e., hence assume <ord z, a> <oo, then by Lemma 5, <ai+,, a> > <ord z, a> 
> r_1. Successively <a,,, a> > rn1 ? r., i. e., a v a8, and <a,, a> > r,, 
> r,+1. Hence the first part of 1) is satisfied since supp (y - z) C supp y 
U supp z. While a8 , supp z V a, > ord z, thus 2) is satisfied. 

Suppose a E supp z and a > a,,-. Since <aj, a> ?rn > rn-i repeat the 
same argument <a,1, a> > rn1. We conclude 1) is satisfied completely. 

It is clear from the above argument ord(y-z) < ai if ord y. < ai. 

PROPOSITION 4. If rn is an integer, let k[[w]] be the fixed domain of 
G, in Proposition 3. Then 

[X]=( ao a, an-i 
.1 

I an-1 I I an-1 I | an_ |1 
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and 
[w, Xlr = (r1, r2y r, rl). 

Proof. Since <a, a,,,> =< | a% , |i+ 1>, it is enough to prove the 
statement about [w, x]. 

From Lemma 9 we know [t, x] and [o, x] are independent of the chosen 
basis, so we can assume 

tq +Axt 
i>q 

x tpv + z 11tt 
i>pv 

(,qlpv + E i 

where q= a,-1 >pv 

Let 7= 1, 77i =-- O < i < an-1. 

By Lemma 8 [t, $iw] [t, wi] = (rn), and since x satisfies conditions 
1) and 2) of Lemma 14, we conclude 

X - [,pV/q + E )i] 
bli?>pv/q 

satisfies conditions 1) and 2) of Lemma 14. 

To conclude the proof, we need only prove 

1) aCsupp(, (x) and-' <a_< _ 

q ~ q 

=><as a> <ai, ai+l > = ri+- 
q q' q 

Vi+l1?n-1 
and 

2) C supp,(x) and eail/q = a? a i 
q 

Vi?n -1. 

Proof. Suppose 1) and 2) are true for all a E supp,,(x), a-< c and 
a,-< c for some c. Let 

X _ [,)pvlq + E Wi@] 
e 
dwd +** 

c>i>pvlq 

weediqd + . t 

where edcod is the leading term. 
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Since x _ [Wpvlq + E tit] satisfies condition 1) and 2) of Lemma 
c?i>pv/q 

14, <a;, qd> ? rj+1 if a, < qd _ a+. Also since 

X [- rpvIq + E cA] 
c>i>pv/q 

,satisfies conditions 1) and 2) of Lemma 14, if 

ordt [x Up/ t t ]_az, 
c>i>pv/q 

for some a, ? cq then a, = qd and ed t. Hence 1) and 2) are proved for 
:al a E supp,, (x) a?C d and all a, C d. Q. E. D. 

Now let x yo+yi+ * +y-1 where y= > .jwj if i < n -1 

and yin-i > ejwj. Then from Proposition 1 and conditions 1 and 2, 
j2A-1/anI la.-,.I 

this is the standard expression of x with respect to o. Hence 

X] / aO a, an-, 

I@x] ] an-, '] an-, ' ' | an-,Q.E.D. 
From Proposition 4 it is easy to conclude 

PROPOSITION 5. If [t, X]r (r1,. , r,,) is a sequence of integers then 

there exist a chain of power series rings k [ [t] ] D k [ [yj] D * * * k [ [y,-1] ] 
D k[[x]] such that each is a galois extension of the next one with higher 

ramification index r, and algebraic degree 
I a -1 respectively. ramification a~~~~~ respectively. 

a 

LEMMA 15. Let y,zC k[[t]] ordy, ordz#O, oo. Suppose 

[t, y]-(dpv + ao) dpv + a1, . , dpv + an), [t, z] (pao, palp . . . , pan) 

where pI ? I aO I, dpV + ao > pao [t, Z]r = (r1, r2, . . . , rn). Then 

1) if <pao, dp" + ao> < r1 then t [t,Z + Y]r (ro, r1i . , rn) 

where ro <pao, dpV + ao> and 

2) if <paop dpV + ao> ri then [t, z + y] = (r1, . . , rn)y 

Proof. Let 

Y~yo+yi+ *+Yn 

Z= zO+z1+* +zn 

be standard expressions and x y+z. It is easy to check that 

[t,Y ]r (r1, r2y . . . p rn) 
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1) It is enough to show 

[t, x]-(pao, dpv + ao, dpv + a,*, dp + an). 

From our assumption ord x = pao. Given a C supp z, it follows that 
<ord x, a> = <ord z, a> ? r1 > <ord x, dpV + ao>, and dpV + a, g supp z. Sup-- 
pose aEsuppy and a>ordy= dpp +aO; then since <dp1 +aO,a>?> r 
> <aop, dpv + ao>. Lemma 1 implies that <aop, a> > <aop, dpV + ao> = ro. 

Let x xo + x1+ * + x+1 be the standard expression of x. From 
the above argument ord xo pao and ord x1 dpv + ao. Moreover, since 
dp +a0 a o ao J? a, I p pa1 if pa1 dp +aop it follows that 

r, <pao, pa1> ? <pao, dpv + ao>, hence pa1 > dp" + a,. Furthermore since 
<pao, pa1> r1 > <pao, dp" + a1>, we have <dpv + ao, pal> > ri by Lemma 5. 

Suppose we have proved 

ord xj+1 - dpv + a 
paj+i > dpV + aj 

<dpv+ aj,paj+,> > rj+lVO j < n +. 

We will make induction on i. 

Let a C supp y, a > ord yi then <dpv + ai, a> > ri+,. Also 

a > dpV + ai+ia C supp y K <dpv + ai, a> > rj+l. 

To show ord xi+2 = dpv + ai+1 we must show that dpv + a,+, supp z, 
<dpV + a,. a> > rj+l V a C supp z, a > dp" + ai. 

By Lemma 3, <dpv + a,, pai+,> > ri+l ? <a, pai+i> a C supp zi a > dp" + a,. 
By Lemma 6, we conclude that <dp" + a., a> ? <dpv + ai, pai+i> > gi+1. For 
any a > pai+l a C supp Z) we have <pai+l, a> ? ri+2 > r+l <dpV + ai, dpV + ai+1>. 
By Lemma 1 <dpV + ai, a> > <dpV + ai, dpV + aj+l> = rj+1 a ? pai+i, a E supp z. 
Hence dpv + a,+, f supp z and ord xk+2 dp" + ai+,. 

Since I dp" + ai+l I | ai+l I > I ai+2 I 

pai+2 < dpV + ai+l > <dpv + act, dpv + ai+1> ? <dpV + ai, pai+2>. 

Hence we conclude pai+2> dpv + aj+l. 
Since <pai+l, pai+2> rj+2> <dpv + ai, dpv + ai+1>, <dpv + ai, pai+i> > r1+l 

<dpv + ai, dp" + a,+,> and I pai+1 I > I dpv + a,+1 1, we conclude by Lemma 
7 that <dpv + ai+l, pai+2>> <pai+i, pai+2> =ri+2 

The inductive process is proved. 
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2) By Lemma 1 

<pao, dpV + ao> =r <dpv + ao, dpv + a,> * <paop dpV + a,> =r,. 

Hence it is enough to show [t, x] = (pa0, dpv + a,, * * *, dpv + a.). 

From our assumption ord x pao. Since j dp +a1 j | j a1 j < I a1 p 
= pa1 j and <apo, dp" + a,> <pao, pal> = r1, dpv + a, > pa1. Given 

a E supp z with a > pa1, since <pa1, a> ? r2 > r1 = <pao, pa1>, by Lemma 1 
it follows that <pao, a> > <pao, pa1> = r1, hence dpv + a, , supp z. For any 
a C supp y with a < dpv + a1, since <dpv + ao, a> _ r, <pao, dpv + ao>, by 
Lemma 1 it follows that <pao, a> ? r,. While for any a E supp y with 
a > dpv + a1, since <dp" + a., a> ? r2 > rl = <pao, dpv + a1>, Lemma 1 im- 
plies <pao, a> > r1 = <pao, dpv + a1>. 

Let x = xo + x1 + * * * + x. be the standard expression of x. From the 
above argument ord xo = pao and ord x1 = dpv + a,. Moreover, since j dp" + a1 I 

j a1 | I a2 I p= pa2 |, dpv + a1, supp z, i.e., dpv + a1=/=pa2 and <pao, pa2> 
> r1 = <pao, dpV + a1>, it follows that pa2> dpV + a1. Furthermore, since 
<pa1, pa2>= r2> ri = <pa1, dpv + a1> (Lemma 3), we have <dp" + a1, pa2> 
> r2 by Lemma 5. 

Suppose we have proved 

ord xj dpv + aj 
paj+i > dpV + aj 

<dpV+ aj,paj+1> > rj+1V'O < j < n 

We will make induction on i. 

Let a C supp y with a > ord yi = dpv + ai then <dpv + al, a> > rt+1. Also 
a > dpv + aj+l, a C supp y > <dpi + a,, a> > rj+. To show ord x+, dp + a,+, 
we must show that dpv + ai+1 C supp z, <dpv + ai, a> > rj+,1 V a C supp z, 
a.> dpv + ai. 

If a C supp (zo + * +z+1) with a > dpv + ai then la ? |paij 
> Idpv + ai j and <dpv + ai, a> oo, hence it is enough to show that 

dpv + ai+. f supp z, <dpv + ai, a> > r+1 V a C supp (zi + zi++* + Zn) 

with a > dp + ai. 

By Lemma 3, <dp" + a, pa,+i> > rj+1 ? <a, paj+1>Va C supp zi, a > dpV + ai. 
By Lemma 6, we conclude that <dpv + ai, a> > <dp -] ai, pa4+i> > gi+1. For 
any a > pai+i, a C supp z, <pai+1, a> > rj+1 > r+1 = <dpv + ai, dpv + ai+1>. By 
Lemma 1 <dpv + ai, a> > <dpv + aj, dpv + ai+1> = rj+j V a > pai+1, a C supp z. 
Hence dpv + ai+1 , supp z and ord xi+, = dpv + ai+,. 
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Since 

dpv + a1 i+l ja+l I p, pa1+2 dpV + a+1 
> <dpv + ai, dpv + ai+1> ? <dpv + ai, pai+2>. 

Hence we conclude pai+2> dpv + aj, 

Since <paj+i, pai+2> = ri+2> <dpv + a,, dpv + ai+1>, <dpv + ai, pai+i> > ri+l 
<dpvi + a,, dpv + ai+1> and I pai+l > I dpv + ai+l 1, one concludes by Lemma 

7 that <dpv + a+, pai+2> > <pai+,, pai+2> ri+2 

PROPOSITION 6. Let 1[[t]] D 1[[o]] D 1[[x]] be a chain of separable 
algebraic extensions of algebraic degree pv and p respectively. If [t, (1)]r 
= (rl,, - , rn) and [o, x]r = (b) are two sequences of integers then [t, X]r 

is a sequence of integers. 

Proof. By Lemma 9 we can choose w, x 

x 0P + Y fklw 
t-}}n 

where m ===(p-1)b?1, m =1 m 1 m#?. 

Let 
[t, o] = (a,, a,, . . * a o), aO ppv 
[t, 1W] r (ri, r2, . 

. 
*.nrn) 

and let 
'W @0W + W1 + + W" 

be the standard expression, then by Lemma 9 and Lemma 8 

[t, x -o] (mpv, (m -1) pv +a,, . , (m_ pv +an 

[t, x - IP]r (ri, r2, * rn) 

[t, cP] (pao, pa, *, pan) 
[t, oP]r (r1, r2, * 

. . 
rn) 

and 
=op )o'p + * +* * + ,enp 

is the standard expression. Let x - =P Yo -yo y, + + y,n be the standard 
expression, then 

X P + 1WP+' ***+contP+yo+ylo+Y * ++n 

Now suppose b < r1 or b r1. Then by Lemma 15, 

[t, X]r (b, r,, r2, * *,rn) or (r1, r2, , rn)* 

Hence we can assume b > rl,, 
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Let x = xi be the standard expression of x. Then it is trivial to check 
that x -Y xi = xi is the standard expression of x - Y xi. 

i?c i>c i C 

Since <pao, npv> =- b > r1 and <mnpv, a> ? r1 V a C supp y, a > mnpv, it is 
clear by Lemma 1 that <pao, a> > r 'V a C supp y. 

Hence ord x= pa1 and pa1 ? supp y. Let a C supp yo, then 

I a I > I (m - ) pv + a, I | a,1,l 
hence I a __ pa1 . Thus <pal, a> == o V a C supp yo with a > pal. More- 
over since I(mn-1)pv+aI=I a, <IpalI and 

<pa0, pal> ? <pao, (mn l1) pv + a,>, 

one concludes (mn - l)pV + a, > pal. Hence 

[t, x-Xo] [t= .WP + + Wnp + Yi + + Yn] 
and 

[t, X X], [t,P + *** + on + yi + + Yn]r. 

We have 

[t, yWip + + Xnp] = (pal, , pa.n) 
[t,yi+ * +yn] = ((mn 1 )p +a1< a, , (n- 1)p +an) 
[t, ip + + . + onP]r = [t, t1 . + * * np] (r 2, , rn) 

and 
pv > I a, 1, (mn 1 pi, + a, > pal 

Moreover, let b1 <pal, (in 1 )p" + a,> 

(mn-1)pv + a-pal + 
p Ia, I- Ia, 

qn 1 pV a, 
p-1 I a, a, | 1 

|b 
- a, + 1-bi. 

Ia, a, 
We note that b1 is an integer. 

By Lemma 15 if b1 ? r2 then [t, x - xo]r = (b1, r2, r3, , rn) or 
(r2, r3, , rn). Hence [t, x] = (r,, bi, r2, r2, , r1,) or (r1, r2, , rn). 
Now we can assume b, > r2. Successively we assume for some i ? 0 

[t,x-XO * Xj] 
[t, 'i+lV + * + 'np + Yi,l + + Yn] 
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942 TZOUNG TSIENG MOH. 

[t,x-x0* **xi], 
[tv i+1P + **+ Wnp + Yi+1 + ***+ Yn]r 

[t, Wj+iP + + w,nP] (pai+iy * , * n pan) 

[t Yi+ + * Y *+Yn] ((m - 1) pv ai+ (M 1 )pv + an) 
[t, 0)i+iP + + O)np]r [t, Yi+i + + Yn]r 

=(ri+2, * , r* ) 

pV > I a+l 1, (m 1)pv + ai+, > pai+l 

and let 
bi+l= <pai+l, (m - 1) pV + ai+L> 

(m-1)pv + ai+l -pai+1 +? 
p Iaz,, I I aj, 

pv aj+j 
p Iai + 1. laf+l, 

be an integer. 

By Lemma 15, if bi+, ri+2, then Et X- xo* . . Xj r (bi+,, ri42, *rn) 
or (ri+2, * * *, rn). Hence 

Et, X]r (r,., * * ri+l,, bi+,,, ri+ 2, . . .,rn) or 
(r,, . . ., ri+,, ri+2, . . ., rn). 

Now we mlay assume bi+, > ri+2- 

Since <pa,+,, (m - 1) pv + ai+,> bi+l > rj+ 2 and 

< (m _ pv + ai+,, a> _~ ri+2V8 a E supp (yi+l + + Yn), 
a> (mn-)pv+ ai+ 

it is clear by Lemma 1 that <pai+b, a> > ri+2 V a - supp (yi+] + + Yn) , 

iieo c ord Xr2 = pai+2 and pai+2 SUPP(yi+l + * * * + yn). Let a H supp yi+e. 
Then I a |I> I (M7n )pV +aZ,+2 I | aj+ 2 | and hence I a I >:: I paz,+2 1. Thus 
<p[,+2 a>-roo a ( supp y+1b, a > pai+2, Moreover, since (M_l)pv+a,+21 

I ai+2 m < I pai+2 y and by <pa> ,+ pai+2> '< <pai+, (rn 1)pv+ ai+2> one con- 
cludes (<a 1)pv + a( + - > pai+2 b 

To finish the inductive process, we need only to show 

bi+2 -<pai+2, (m - 1)pv + ai+2> 

b or P and a i+2 + 1 
Thean integ (m-1)er+,i =a 2 and henc celar. aiQ. Thus 

To aninishgthe windct ivelprocss we.ee olyoDho 
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COROLLAMY. Let k[[t]] D k[[w]] D k[[x]J be a chain of separable 
algebraic extensions of algebraic degree pv and p respectively. Let 

[t'o] = -(ao,a1y ***,a,n), [t, W]r= (rl, r2y * * * n) 
a,__1 aji +1 [.(o,X]r= (b), bo= b, *,bi=bj j |a4+ 1j + 1,*'"l=l=1 

If b >ri+1 0 i?n -1 then [t,X]r= (r1< *,r, b,& ). Otherwise, let i 
be the smallest integer such that b, ri, . Then b, < r+1 implies 

[t, X]r = (r1, , ri, bi, r ,+1, 
and 

b, ri+1 => [t, X]r r,*** , + **,r) 

Proof. It is clear from the proof of Proposition 6. 

The following proposition will justify the term pre-higher ramification 
index. 

PROPOSITION 7. If k[[t]] is a galois extension of algebraic degree pv 
over k[[x]] then [t,x],,=sequence of higher ramification indices. 

Proof. Let 
[t X] r (r1, r2, 

. . . 
rn) 

X Xo +Xi + * **+ Xn 

be the standard expression. 

We divide the proof into several steps. 

1) Given T- an automorphism ord(i-(t) -t)- r#r, V i, we proceed 
to prove r(X) =4x. If r > rn then by 1) of the proof of Proposition 3 
r (X) =/= X. 

Now suppose ri+1 > r > r* for 0 ? i < n -1, where r0 = 0 Since 

fT (X) - X = T($+ $1 - + -+Xi) 

(xo + * + x) + (x+1 + ***+ x) -X((Xi+ + * *+ Xn) 

it follows from 1) of Proposition 3 and Lemma 8 that 

ord(r(xo+ * +xi)- (xo+ + Xi)) 

-(r + 
a i ati |r I a*i + ai- I ai . latI 

For any a Esupp(xi+1+ * Xn), 

ord(r(t) at) - t a 1+ r)ll a rja+a -Ia Fa T 
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If |?a1 I_ clearly r I a+ a I a |> r I a, + a, | a, 1, while if I a 
< I a, then r < <aK,a> = + 1 implies 

rIaI +a- Ia>rIai + a*l-all. 

Hence we conclude 

ord(r(x)-x) =ord(r(xo + . + xi) -(x0 +Xi) 
~r I a1, I +aj a* 1 7 15oo; 

i.e., r(X) =4X. 

2) Suppose ord(i-(t) -t) =ri for some 0 < i?n. Since 

ord (r(xi+, + * - * + x,n) -(Xi+i + * * * + x.)) > ri I a, + ai -| a* 1 

ord(r(xo+xi+ . + - * xi)) >rs Ia I+a*- al 

Using the same reasoning as in 2) of the proof of Proposition 3, we conclude 
that the coefficient Yr of tr in r(t) satisfies 

avi 1+ a Xrjal +1 

I I ai - I ^al O 

This expression has a1-1 diff erent solutions. 
I ai 

3) Let G G1 > G >D > G. be the sequence of the higher rami- 
fication groups. Then by 1) and 2) 

pI=, ord G II ord G/Gi+l II a I/I a1+i I 
I ao I ~pl 

hence ord G/Gi+l = a1i1i We conclude any r1 is a higher ramification index 
Ia1 

and ord Gi/Gi+, a= - 

COROLLARY. If kl[t]] D le[[x]], ordx p', [t, x]r= (r1), then kl[[t]] 

is galois over k[[x]] t> ri is an integer. 

Proof. ; Proposition 7. 
? Proposition- 3. 

LEMI\IA 16. Given k[[t]] D k{[ w]] D lk[[x]] where ki[[tl] is a galois 
extension over kl[[L]] of algebraic degree n 3 | nI = 1, and kl[[w]] is a 
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galois extension over k [ [x]] of algebraic degree p: Then there exists k [ [y]] 
such that k [ [t] ] is a galois extension over k [ [y] ] of algebraic degree p, and 
k[[y]] is a galois extension over k[[x]] of algebraic degree n. 

Proof. We can choose t, w, x such that 

t .,11n . P+A tnp + Xttnni=-2 + *o A 1& O~, |5 rn m 

Let y xn - tp + A tnmn-(n-i)p . Then n 

[t,ylr<p,mn-(n-1)p> =mn -np?+ n[W,x]l?+ (nl) 

Hence by the corollary and Proposition 3, k[[t]] is a galois extension over 
k[[yJl. Q.E.D. 

THEOREM. Given k[[t]] a separable algebraic extension over k[[x]]. 
Then there exists a chain of successive galois extensions between k[[t]] and 
k [ [x]] if and only if [t,xlr is a sequence of integers. 

Proof. ? Let ord x = a. Since [t, Xa/allr = [t, xlr, Lemma 8 shows 
that it is enough to prove the case I a a, which is Proposition 5. 

Using Lemma 16, we can assume there exists a chain of galois extensions 
between k[[t]] and k-[[xIa!Ia]]. Since [t,xlal/a],= [t,xlr, we can assume 
a I a pv. 

If v-= 1, then from Proposition 7 [t,xlr is an integer. Using mathe- 
matical induction and Proposition 6, the theorem is proved. 

4. Least Galois extension and G-character sequence. 

LEMMA 17. Given [t,xIr= (r1,r2, ,r,), H.D. M.S. of x with 
r espect to t= (do, di, , d,), I a I = 1. Then 

[ ti/a, Xila] r - (art (a -I), ar2 -(a - ) ...ar,- (a - 1) 

and 

H. D. M. S. of xl!a wvith respect to 

tl/a -=(do, ad, -(a - 1) don, ad,s (a - 1) do) . 

Proof. It is clear that 

H. D. M. S. of x wilth respect to tl/a =- (ado, ad, , ad8). 

This content downloaded from 128.163.2.206 on Wed, 1 Jan 2014 23:09:35 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


946 TZOUNG TSIENG MOHT. 

By Lemma 8 we conclude 

H. D. M. S. of Xl/a with respect to 

ti./a (do, ad, --(a -1) do, ,ad, -(a l) do). 
Since 

|do > I di I i > O, <ad -(a -1) do, ad; (a-1) do> -a<dj, dj> - (a-1 
o? i < j c s. 

Hence by Proposition 2, 

[tl/a, Xlla] (ar1- (a-i), *,arn- (a-i)) 

The following proposition is a generalization of one of Professor Abhyan- 
kar's lemmas: the least galois extension of a p-extension is tame. 

PROPOSITION 8. Suppose [t, x] - (ao, aj), aO - pv, a1 a 1 [t, x], = (ri), 

and [t, y] = (bo, bi), bo =pv, I bi I 1 [t, y]r = (s1). Let a =( V 1 

Then k [[tlla]] is the least galois extension of 7s[[x]] containing k[[t]]. 
Moreover, the galois group of the least galois extension of kc[[x]] containing 
k[[t]] iff (p-_1,al-1) = (p -1, b -1) and b,-1F--=a,-1 (pv-1). 

Proof. By Lemma 17, k[[ti/o]] is galois over k[[xl/l]] iff cr, is an 

integer. Since r =<ao, a,> = p _ L cr, is an integer if3 a c. Thus for 

any c < a, k [[tllc]] is not galois over kI[ [xl/O] 1; hence k [[tl/l]] is not galois 
over k[[x]]. It suffices to prove k[[tl/a]] is galois over k[[x]]. 

Let tl/a ., T (w) =0o0 0 < i < a where 0 is an a-th primitive root of 
unity, and let G be the galois group of kc [ [j] ] over kc [ [xl/la] ]. Since 
x C k[[t]] k[[wa]], x is fixed by iT- O i < a. Since kI[[w]] is of degree 
apv over k[[x]], it is sufficient to show: 

= 7tT 7Tj 7 ,T Tt - Ti 
for any /,wrE G. 

Let the higher ramification index of G be r. Then r ar, - (a-i) 
by Proposition 7 and Lemma 17. Given any p C G let 

c) (w) =) + xcvr + 

Then =w 7r X = Ar for any +, 7rE G. Suppose q& ' 7r1T-; then 

Tb (w) 0= 0 (w) =Ofw + Oi wr + . 
7rTj (() =jw + ?j,7r,(r + 

Hence 0 S=O, Xo= Xr, i.e., 'TT 7/=. 
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We have proved that k[[tlla]] is the least -galois extension of Ic[[x]] 
containing k [ [t]]. 

Before we proceed to prove the conditions for isomorphism, we study 
more closely the galois group H of I[[tlla]] over I[[x]]. 

The multiplicative rule af the group H is 

(01r$) (Trj) = (T'7 i)ij 

where 

(Tir,T {) (w) - + 0(r-i)A7r+ ?. 
hence 

TVT-iE cG. 

Since the inner automorphisms induced by {rT} define a group of auto- 
morphisms on G as a vector space over the prime field, G can be written as a 
direct sum of irreducible subspaces under the group of automorphisms. Let 
G - G1 + G2,- * , + Gm. Since ATIT-4_- i0(r-i)Ar, Gi is isomorphic to the 
additive group,of P(6r-1) where P is the prime field. Now H is isomorphic 
to the group of m + 1-tuples (A,, *, , XO) where Aj E P (0r1), and the 
group structure is defined by 

(AI) A2n . . . * +XMOi i,) * (l.112,. , A-n O)Oj) 

(A1+ 0(rl)un * )A4m + 0$(r-1)t)n0i+j) 

Now we proceed to prove the conditions on isomorphism. 
Let H* be the galois group of the least galois extension of k [ [y]] 

containing k [ [t]]. Then the order of H equals the order of H* since 

ord (llH) = pa = p p _Ia-1 )ord (H*) = pV1 7c- it is ob- 

rvious (p1 -,,)a,(- 1) = (pP-,bi 1). 
Let the isomorphism be f: H -E H*, and g9,i g*,t be the inner auto- 

morphisms induced by rt on H, H* respectively. Then fgi (7r) = f (rr-`) 

=f((7)f(r)f(t-i) - g*f(r)tf(.). Thus the cardinal number of the orbit 
of Xr under {g,i} equals the cardinal number or the orbit of ff(-r) under 
{g'ri} since f: {Tr} - {T-}. Hence 

r-1=arj- (a-1) -1 
= a (r, - 1)-a (s- - 1) mod (a) 

i.e. 

aPlL( p - 1 ) b-1 r(p -1 1 mod(a). pV_ (v- (V1, aj -1) J P 'P-t1L (pp 1, a,l-1)J 
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Hence we coniclude: 

al-1 a bj1 mod(pP-1) . 

It is clear from our discussion on the representation of H as m + 1-tuples. 
Q. E. D. 

The following corollary follows from the proof of the preceding 
proposition. 

COROLLARY. The galois group of the least galois extension is abelian 
if a-1 =O(pv-1). 

The following proposition is pointed out by Professor Abhyankar. 

PROPOSITION 9. Suppose ord x:= pP. If [t, X]r- (r1, *, r,) is a 
sequence of integers, then the least galois extension of kA[[x]] containing 
k [ [t] ] is purely wild; i. e., the corresponding algebraic degree is pu for some u. 

Proof. If ord x p, then k [ [t] ] is galois over k [ [x] ]. Therefore we 
assume ord x = pV for some v > 1. By our theorem we know there exists 

a C k [ [t] ] such that k [ [t] ] D k E [w] D k [ [x] ] and [w, x] is a sequence 
of integers. Assume the least galois extension of k [ [x]] containing k [[)]] 
is purely wild over k [ [x] ] and call it k [ [y] ]. 

If tC E;k[ [y]] then k [ [y]] is the least galois extension of k [ [x] ] con- 
taining k[[t]], hence we are done. 

If t g k [ [y] ], let k [ [z] ] be the integral closure of k [ [y] ] [t] in k ( (y, t)). 
Then k [ [z]] is a galois extension of degree p over k [ [y] ], and the least 
galois extension k[[u]] of k[[x]] containing k[[t]] is the one containing 
k[E[z] ] 

Imrbed k [ [z]] in an algebraic closure Q of k [ [x] ]. Let k [ [z.t]] be the 
conjugates of k [ [z]] under the k-automorphisms of Q which induce k [ [x] ] - 
automorphisins on ke[[y]]. It is obvious that k[[zi]] is galois over k[[y]] 
with isomorphic galois groups for all i. Since kc[[u]] is the compositum of 
all k[[zi]], we can imbed the galois group of k[[u]] over k[[y]] in the 
direct sum of the galois groups of 1k[[z*]] over k[[y]] for all i, which is 
isomorphic to a finite direct sum of the galois groups of k[[z]] over k[[y]]. 
Hence the galois group of k [ [u]] over k [ [y]] is a subgroup of a group of 
order pX for some A. Thus the order of k[[u]] over 1c[[x]] is only divisible 
by p. Q. E. D. 

5. Saturation and G-character sequences. We summarize the proof 
of Proposition 3 in the following lemma. 
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LEMMA 18. Given [t,x] = (ao,a1, ,a.), -[t,Xlr== (r1, ,rn) and 
a group G of automorphisms of k[[t]] with higher ramification index r, then 

1) r #& r* i implies ord(r (x) -x) - min ord(r (ta) -ta) where a runs 
through supp (x), r C G. 

2) r r,ordG> 1lWlll implies min{ord(r(x)-x)j-E G} 

min{ordi (ta) -ta I - G a C supp (x)}. 

PROPOSITION 10. Let x,yC k[[t]] with ordx=pv, ordy==m with 

m > pv, I m I=1, 10 k[[x,y]]. Suppose [t,x] =X (r1). Then the satura- 
tion 0, of 0 with respect to x is 0 + yMb + Mm where J[ is the maximum 
ideal of k [ [t]] and b runs through all integers less than m with <b, m> ? ri. 

Proof. By Proposition 8 let k[[tila]] be the least galois extension of 
k [ [x]] containing k [ [t]], G be the galois group of k [[tila]] over k [ [Xl/a]] 

and let r be the higher ramification index of G. Let ri be the automorphism 
defined by -i(tila) -OitlI/a where 0 is a-th primitive root of unity. 

Clearly Mm C Ox. Let z C Mb for some b < m with <b, m> ? ri. By 
Lemma 3 <c, m> ?ri cE suppz and c < m. To show O + Mlb + _Mm C Ox, 
it is enough to show that tb C Ox b < m and <b, m> ? ri. Since for any ix C G, 
we have 

ord (7r(tb) tb) ba- b +r I b 
ord (7r(tm) _tm) am-1 + r. 

Furthermore 
<b,, m> -< ri 

implies 
m-b 

am-ba < 
amI - ba 
ab n + 1 ?arl- (a-1) =r. 

Hence 
am-1 +r?_ ba-I b I +r I b 

Thus 
tb C Ox, b < m and <b, m>. 

On the other hand, suppose z C Ox. By subtracting some element in 
0, we can assume I ord z I < pv. Using Lemma 18, we conclude that 
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ord(ir(tb) -tb) a am-i + r b C supp z. Reversing the above calculation 
we conclude 

<b, m>?ri b<Km, bE suppz. 
i. e., 

ZOE + :Mb+MnM Q.E.D. 

COROLLARY. Suppose z C 0, ord z - pv and [t, z] = (s,). If s >? ri 
then 0b C 0z. 

COROLLARY. If ord x p then the saturations are independent of trans- 
versal parameters. 

Remark. In general saturations are dependent on transversal parameters. 
If G-character sequences are different, then the saturations could be different 
with the same least galois extension and the same galois group. 

The following example is about a case such that [t, X]r is not one number; 

Example. Let k be an algebraically closed field of characteristic 2, 
k [ [t] ] be a powerseries ring, and x, w C k [ [t] ] with 

0 t3 + t5 + t7 
x- 03 + -7 t9 + t15 + t2l + t23 + t25 + t27+ . 

Since [t, w]= (2), and [t, X]r = (2. 5) we have by Proposition 2 that 
there exists at least 9 different automorphisms which fix x. Hence k[[t]] 
is galois over k[[x]] with abelian galois group. 

Let y t15 + A21 + t23, AC Ek, X 1. Then y is not fixed by any of the 
9 automorphisms because [t, x-yyr (3). Hence k( (x, y)) k( (t) ), and 
k [ [t]] is galois over k [ [x - y] ] with abelian galois group. 

Now it is routine to check t19 C O.-y, while t19 0. 
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