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GALOIS THEORY OF POWER SERIES RINGS IN
CHARACTERISTIC p.*

By Tzou~e Tsiene Mom.

Introduction. 0.1. Let & be an algebraically closed field of charac-
teristic p, E[[t]] be a one variable power series domain over k. One problem
in algebraic geometry is to study some algebraic objects of k[[¢]] and try to
deduce from them useful data concerning the geometry of algebraic curves.

In characteristic p =0 case, such useful notions like saturation theory
[2] and characteristic pairs [1] are constructed and give a complete classi-
fication of singularities. In the p=%0 case, no applicable generalization of
the above notions are easily deduced. Omne of the main reasons for this is
that only in the p=0 case every finite algebraic extension is cyclic galois.
These lead one to study the galois conditions in p=40 case.

To analyze the galois condition of finite algebraic extensions, Professor
Abhyankar observed the following: let k& be an algebraically closed field of
characteristic p, and let + be an k-automorphism of k[[¢]] and =,y € E[[¢]]
with k[[z]] =k[[y]], then ord(r(z) —z) =ord(s(y) —y). Moreover, let
r be an k-automorphism of k[[¢]] of order p with ord(+(¢) —t) =, E[[«]]
be the fixed domain of =, and

the differential multiplicity of # = m (=ord(dz/dt) +1).

Without loss of generality, we can assume « = ¢# 4+ A¢™ 4 higher terms. Since
ord (7 (t?) — ) =rp, and ord(r(z—1t?) — (z— 1)) =m—1+r, 7(z) =2
implies pr=m-—1-r, i.e.,, r= (m—1/p—1). In other words E[[¢]] is
galois over k[[z]] of degree p implies (m—1/p—1) is an integer. The
above fact observed by Professor Abhyankar indicates that there is a close
relation between “differential multiplicities” and “galois conditions.” One
consequence of this is the variation of least galois extensions of the local
ring of a plane algebroid curve of multiplicity p with respect to different
transversal parameters. Namely, let k[[£]] be the integral closure of the local
ring 0 of a plane algebroid curve of multiplicity p, and let y, 2 be transversal

* The work was supported by the National Science Foundation under NSF-GP-6388
at Purdue University in partial fulfillment of the requirements for the Ph.D. degree.
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920 TZOUNG TSIENG MOH.

parameters of 0, the k[[¢]] can be a cyclic galois extension over k[[y]] while
it is not a galois extension over k[[z]].

Looking closely at the above fact observed by Professor Abhyankar, we
were able to prove the converse of it (i.e., suppose z € k[[¢]] with ordz=1p
and differential multiplicity of #=—m %00, then (p—1)|(m—1) implies
E[[¢]] is galois over E[[z]]). '

To generalize the method used by Professor Abhyankar, we consider the
element @ =={"?" 4-yim2*, A necessary and sufficient condition that there
exists an k-automorphism = of k[[¢]] such that

ord(7(2) —) > min (ord (7 (¢ — "), ord (= (¢7#*) — tn2*))
will be ord(r(¢m?") — tmr”) =ord (r(t"*) —¢"*). we observe that
ord(r(tm?") — ¢y = (m—1 4 r)p? and ord(r({"*) — ") = (n—1 4 ) p#
where r—ord(r(¢) —t). Thus, (m—144)p’=(n—14y)p~ i.e,
= m—————z ;:Zf - + 1. The number —_m£ ::Zf : -+ 1 is of interest and later on
we find it is very useful in calculating k[[¢]]. We call it the “ p-distance”
{mp”, np*> between mp” and npt (See §1. Definition 1).

To generalize the notion of differential multiplicity, it is natural to
consider “higher-differential multiplicity sequence (H.D.M.S.).” Namely,
let ordz=d, and d, be the order of the next term in z with exponent not
divided by | do | ; successively let d; be the order of the first term after ##- in
@ with exponent not divided by | diy |. Then (do, dy,- - -, ds) will be called
the higher-differential multiplicity sequence of z with respect to ¢. (See §2.
Definition 5).

Now let us consider the case that H.D.M.S. of 2= (do, dy,d,), say

T =Agt% -+ Ayt% | A,t%  Then a sufficient condition that there exists an
automorphism r such that

r

ord (7(2) —=) > min (ord(r (%) — {%), ord(r(z—At%) — (z— Aet%))
will be
ord(r(t%) — ) — min(ord(r(t%) — ¢%), ord(r(t%) — i%)),

ie, r=min(<d,, di>, {do, d,>) where r—ord(r(t) —¥). These motivate

us to give the definitions of G-character sequence [¢,2] and sequence of pre-

higher ramification indices [¢,7], (see § 2. Definition 2 and Definition 3).
Note that if @€ E[[¢]] with orde—=p and differential multiplicity of

z=m <, then HD.M.S. of 2= (p,m),

[be] = (m) and [t,a), — (5=

).
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POWER SERIES RINGS. 921

It will be shown that the concepts introduced above are related to
Hilbert’s higher ramification theory (for the definition of higher ramifica-
tions, see [3]).

With above notions we prove:

COROLLARY OF ProposiTioN 7. Suppose [t,z],= (r.) and ordz = p”.
Then k[[t]] s galois over k[[«]] if and only if v, is an integer. Moreover,
if vy 1s an integer then it is the higher ramification indez.

Note that the “only if” part is a generalization of the fact observed
by Professor Abhyankar. Quite naturally we want to know what [¢,z],
indicates in general. The following proposition is a partial generalization
of the proceeding proposition.

PropostTioN 7. If E[[t]] is a galois extension of algebraic degree p”
over k[ []], then [t,z], = sequence of higher ramification indices.

Under the instruction of Professor Abhyankar we found that the converse
of Proposition 7 was not true, namely, there exists = € k[ [¢]] such that [¢,z],
consists of two integers while E[[¢]] is not galois over kE[[#]]. At this time
Professor Zariski suggested we study the following weaker problem: under
what condition does these exist a y such that k[[«]] C k[[y]] C E[[¢]] with
E[[t]] galois over k[[y]]?

Following this suggestion we were able to prove Proposition 5 after
extensively studying p-distance.

ProposITION 5. Suppose ordz=p*, [{,2] = (@o," * *,as) and [{,z],
= (74, * *,Tn) 1S @ sequence of integers. Then there exists a chain of power
series rings

BL[t]]=Fk[[y0]]1 D k({92112 - * - D B[ [¥ar]] D E[[ga]] = K[ [2]]

such that k[ [v;]] is o galois extension of k[[yu.]] with higher ramification
| |
I [17re% I ’

index 14, and algebraic degree

To prove the converse we need Proposition 6 which is proved by using
the technique of p-distance.

ProposiTioN 6. Let B[[t]] D k[[w]] D E[[=]] be a chain of separable
extensions of degree p” and p respectively. If [t 0], and [w,z], are two
sequences of integers then [t,z], is a sequence of integers.

Combining Propositions 5 and 6 we can state our main theorem:
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922 TZOUNG TSIENG MOH.

THEOREM. Suppose k[[t]] is a separable algebraic extension over k[ [z]].
Then there exists a chain of successive galois extensions between k[[t]] and
kE[[«]] if and only if [t,2], is a sequence of integers.

0.2. We wish to indicate the usefulness of the notions of [¢,2], [¢,z],
and the theorem. We shall do so by listing some applications and pointing
out that some theorems concerning least galois extensions or saturation rings
in p-extensions can be generalized to the case that [¢,z], consists of one
number. Namely

Proposition 8 and CoroLLARY. Suppose [t,z] = (p?, a1), [¢, 2], = (11),
|ay | ==1. Then the least galois extension over E[[z]] containing k[[¢]]
18 tame over k[[t]]. Furthermore, the galois group is determined by the
residue class of (a;—1) mod (p*—1).

Prorosition 10. Suppose z,y € k[[t]], ordz = p?, ordy=m, m > p?,
|m|=1,0=Fk[[z,y]] and [¢,2],—= (r.). Then the saturation ring 0, of 0
with respect to  is 0 - IM® 4 M™ where M —tk[[¢t]] and b runs through
all integers less than m with <b,m> =r,.

For the purpose of application, Professor Abhynakar pointed out the
following proposition.

Prorosttion 9. Suppose ordz=yp*. If [t,z],= (1, " ,m) 18 a
sequence of integers, then the least galois extension of k[[z]] containing
E[[t]] ts purely wild, i.e., the corresponding algebraic degree is pt for
some p.

Concerning saturation, we have Proposition (see
CorROLLARY of ProrosiTioN 10). Suppose

2€0=Fk[[z,y]] ordz=ord z = p?,

and ordy=m >p’, |m|=1, [t,z] = (r1)[t,2] = (s1). If ss =1y then
0, C 0,. Furthermore, if v—1, then 0,=0,=0-Mm. While in general
0,540,

It follows from above that if G-character sequences are different, then

the saturation could be different with the same least galois extension and the
same galois group.

0.3. In the remainder of the introduction we shall describe the content
of each section.
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POWER SERIES RINGS. 923

In §1, we give the definitions of p-absolute value and p-distance and
write down the basic properties of p-distance.

In §2, we give the definition of [¢,z], and two equivalent definitions of
the notion “standard expression” (Definition 4 and Proposition 1) which
are useful afterwards. To finish §2 we show that [f,2], is a monotoic
increasing sequence and all notions such as [¢,z], [t,2], and H.D.M.S. are
functions of a pair of fields k[[¢]], k[[«]], i.e., they are independent of
the basis chosen for k[[¢]] and E[[=]].

In §38, Lemmas 11, 12, and 13 are technical lemmas to prove Proposi-
tion 3. Lemma 14 is the essential part of the proof of Proposition 4. Com-
bining Proposition 8 and 4, we get the sufficient part of the theorem and
Proposition 5. Lemma 15 is the essential part of the proof of Proposition 6.
Proposition 6 and Lemma 16 consists of the necessary part of the theorem.

In §4, we prove Proposition 8 and Proposition 9 about least galois
extensions.

In §5, we discuss saturations. Proposition 10 will give a complete
description of saturations if the G-character sequence consists of two elements.

1. p-Distance.

DerintTioN 1. If @ is a positive integer, then we define the p-absolute
value of a, denoted by |a |, or |a|, as

la|=|alp=max{p”: p"|a}.

If a and b are positive integers with a < b, then we define the p-distance of
the pair a, b, denoted by <a,b>, as

<a,by = if |a| =[]

b— .
<a,b>=W_%T+1 if la|>|0].

In the remaining part of this section, we will prove several lemmas con-
cerning the properties of p-distance which will later be useful.

Lemuma 1. Suppose a < b <c. Then

1) <a,b> #4<b, ¢y implies <a, ¢y > min(<a, b, <b,¢c))

R) <a,b> =<b,c> implies <a,c>=min(<a, b>,<b,c)).

Proof.

10

This content downloaded from 128.163.2.206 on Wed, 1 Jan 2014 23:09:35 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

924

1)

8)

Y)

R)

a)

TZOUNG TSIENG MOH.

Consider the case <a, b> 5= <b, c>. If <a,c)> =00, then the inequality
is obvious because either <a,d> or <b,c) is finite. If, on the other
hand, <a,c¢> <, i.e.,, |a|>]|c]|, we consider the following three
situations:

o |el=[b] B) |b]=le]l v [e]<|b]<]al;
|c|=|b| implies |a|>|b].

Thus since c—a>b—a and |a|—|c¢|=|a|—|b]| then
<a, ¢y > <a, b,
[o]=]c|.
Since c—a>c¢—b and |a|—]|c¢|=|b|—]c¢| then
La, ¢y > Kb, ¢>.
e|<|b|<|a|. We consider the following two situations A), B).
. b—a c—Db
A) If <a,b> > b, 0>, l'e"]a]—|b|>|b|—|c|then
(b—a) + (¢—0) __¢t—a > c—b
(lal—lo D)+ (o]—Tlcl) [al—lc]7 [o]—]c]
. b—a c—b
B) If <a,b> < <b,cD, Le.,lal_lb| < |b|_|0|then
(b—a) — (c—0) c—a b—a

(al—T8D) + ([8T—Te) ~ Tal—Ie]~ Tal—[?]

In the case <a,b> = <b, ¢>, we consider the following two situations:
@) <a,by=<b,cy=n B) <a,by=<b, 0y <.

a, by = b, > =o0.

Since |a|=|b|=]c|, then <a,cy=00.

B) <a,b>=<b,c> <o implies |a|>|b|>|c]| and

b—a

c—a (b—a) 4 (¢—0b)

_ c—b
lal—[b] [b]—]c]

> e T e T~ el — 15 )+ (5 —e])
__6—b
=T51—Te]
Q.E.D.

Using Lemma 1 repeatedly, we can prove the following lemma.

LEMMA 2. Given a <b, <b, <+ - < b, < ¢ then

<a, ¢ Zmin (<a, by, <bs, s>+ - b, ).
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POWER SERIES RINGS. 925

The equality holds if and only if <a,bs> = by, 0> ="+ - = by, >,
Lemuma 3. Suppose a <b<c. Then

1) <a, by > <a,c> tmplies <a,c> > <b,c>.

2) <a,by={<a,c> <o implies <a,cy = <b,c>.

Proof.

1) By Lemma 1, <a,c> = min(<a, b>, <b,cd).
Since <a, b> > <a,c>, then <a,b> > <b,c>.
By Lemma 1 again, <a,¢> > <b, ¢>.

. . b—a c—a
?) <o By =<, 05 oo dmplies 1T = TG

Thus since ¢c—a>b—a, |a|—|c|>|a|—]|b], then
b—a (c—a) — (b—a) __¢c—b
lal—To] (lal—[ec)—(al—[b]) |b[—]c]
and ¢>b, |b|>]|c|. Hence <a,bd=<a,c>=<b,c).
Lemma 4. Suppose a<b<c. Then <a,by <<b,c> <o implies
<a, ¢y <<b, 6.
N b—a c—b
Proof.  <a,b> < <b,c> <o  implies [a[—][3] < 5 [—] o]
|a|>|b]>|c| Thus since
c—a (b—a) + (c—0) < c—b
lal—Tel  (Jel—lbD)+ (To]—lcl) ~[o[—][c]’
then <a, ¢> < b, c>.
Lemma 5. Suppose a<b<c. Then <a,bd <<a,c> <o implies
<b, ¢5 > <a, 6.
Proof. We consider the following two situations: 1) <b,c> =00, 2)
Kby ey < oo,
1) <b,c> =—o0 implies <b,c> > <a,c>.
) <b,c> <o implies |a|>|b|>|c|. Thus since

and

a
lel

b—a
[a]—]7]
(c—a) — (b—a) __c—b c—a
(Tal—Te)—(BI—Jal) _T61—Tlec|~ Tal—[c]

i.e, <b,c>><a,c>.

then

C.—
<Tel—
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926 TZOUNG TSIENG MOH.

Lemma 6. Suppose a <b<c Then <a,cy > b, c> implies <a,b>
=<a,¢y. The equality holds only if (a,b>=o0.
Proof. Tt is clear that <a,b)=c0 implies <a,b>=<a,c¢>. Suppose

c—a

<a, by < oo, then since |a|>|b|>|c¢| and <a,c> <o, thus Tal—Te]

> ﬁ—l which implies
(c—a) — (c—Db) b—a c—a
(Tal—TeD—(BT—Te) ~ Ta|—[51" Ta|—lel’
ie., <a,b> > <a,c>.

Lemma 7. Suppose a<b<d, a<c<d. Then <a,b>><a,cd,
<b, 6> ><a, ¢y and |b| > |c| implies <c,dy =<b,d>. The equality holds
if and only if b,y =oc0.

Proof. The lemma is clear if <c,d>=o. We can assume <c,d> <o,
ie, |¢|>|d|. From our assumption that |a|>|c|, |b|>]|c|. Now
we consider the following two situations: 1) |b|=]|a|>|c|>|d]|, ?)
la]>[8]>]e]>]d].

1) [b|=|a|>]|c|>|d| implies d—a>d—b

|a|—|d|=|b]|—|d|. Thus w><a,d>><b,d>> <a,c>. Then

d—a d—b c—a
[a]—Td[~ To[—=[d]~ Tal—T¢]
implies
d—c¢ (d—a) — (c—a)
[e[—Tal~ (Ta]—Ta)—([a]—Te])
d— d—b>
> Tal=Ta1 > T5T=T1a]

2) la[>]b]>[c]>]d].
Since o > <a,b> > <a,c>, then

b—a c—a
[a[—T151" Ta[—¢]

which implies

d—b
[o]—1d]
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POWER SERIES RINGS. 927

__ (d—a)—(b—a) (d—a) — (c—a)
T al—=Tah)—=(a[—T8D) = (al—Td))—(a[—Td])
__d—a
~el—][d]
i.e., <c,d>=<b,d>. Q.E.D.

2. The standard expression and G-character sequence of a non-zero
non-unit element in k[[¢]]. In the rest of the paper let % be an algebraically
closed field of characteristic p40, E[[¢]] be a powerseries ring of one
variable over %k, # be a nonzero non-unit element in k[[¢]], and

supp; t=supp == {4 € Z | & — Sa;t/, a; 5% 0}.
We make the following definition:

DerFiNiTION R. Suppose z€ k[[t]] with 0 <ordz <co. We define
[t, 2], the G-character sequence of x (with respect to t), as

[t 2] = (@, @1, @z, * 5 00)
where
o =ordx
a; = Max{i € supp @ | <o, 7> = Min<a,, 7>, 7€ suppz with j > ordz and
1 >orda}. And in general for 0 =s=n
as = Max{i€ supp @ | © > a5,

gy, 1> = Mindas.q, 7>, § € supp e, with § > as4},
iy, 1y =00 1€ sUPp & With > ay,.

DEerFINITION 3. Suppose x € k[[t]] with 0 <ordz < 0,
[t: x:l = (a'o, Ay, Qgy* * °, an).

We define [t,a],, the pre-higher ramification indices sequence of = (with
respect to t), as

[ty x]rE ("'1: Ta,* " 7'%)
where

Ty = Wj-1, Q).
DeriniTION 4. Each x has a unique expression of the form

r=a,}tz, 4+ +z,
with
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928 TZOUNG TSIENG MOH.
1) ordz;=a; where (G, @y, * *,a,) = [t,2]
2) degw; < ord @y,

We call such an expression of x the standard expression of @ with respect to ¢.
We next give another characterization of the standard expression of z.

ProprosITION 1. The standard expression of ¢ sz ==, 21+ - -+ 2p
if and only if

1) ordau, > dega;

3) <(ordw,ad = <ord @y, ord x> a€ suppx; with a > orda;
4) (ordz,, ad = o @€ suppz, with a > ordwz,

5) o0 > (ordw;, ord @) > ord @iy, ord .

Proof. <& It suffices to prove
ord @, 7> > ord @, ord 4>
for each j€ suppz with j§ > ord @i,,.

Let j€ supp @i where 1+ 1=1+s=n. Using Lemma 2 and con-
ditions 8) and 5), we conclude <ordz;, > > <ord @;, ord z;,,>.

> 1), ?), 3), 4) are obvious from the definitions of [?,z] and the
standard expression. From the fact

o0 > <ord @y, ord @4, > > <ord @4, ord ;>
and Lemma 5 we deduce

00 > <ord i, 0rd Tiy1> > OTW X4y, 0rd 25>
which proves 5).

Given z € k[[£]], we associate with z another sequence of numbers, the
higher differential multiplicity sequence (H.D.M.S.), defined as follows::

DErFINITION 5. Given any posilwe integer i, let

ord z mod Rlil = max{ordy | y € z 4 Rlil}
where
s€ R—k[[1]].

The higher differential multiplicity sequence (H.D.M.S.) of =z s
gwen by :
H.D.M. 8. = (do, d1,* * *,ds)
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POWER SERIES RINGS. 929

where
do=—ordz
dy = ord z mod Rldl
d; = ord z mod Rld:-l
dy=ord 2 mod Rlds-l
and

ord z mod Rlds] —= oo,

Remark. di=min{j|j€ suppz with |j| <|dis|}.

Using the notion of the higher differential multiplicity sequence, we will
give another way of calculating the G-character sequence.

ProposiTioN 2. Suppose z€ k[[¢]] with 0 <ordz <. Let

(aOJ Ay, - ')a‘")

be the G-character sequence of x with respect to ¢ and let (do,ds,- -+, dy)
be the higher differential multiplicity sequence of = with respect to t. Then

1) Qo = do
) ay=max{d; | d; > aiy With G4, d;)> = minda;q, d>}.

Proof. Let acsuppe with a«>a;,. Suppose a3 = dy < a < dy,, and
{1,y <oo. Then |aiy | > | a|, which implies ;4 < ds. By the definition
of H.D.M.S. we have |« |=|d|, hence <ty a> > <@, di>. This means
{4, @> can not assume the minimum value.

LemMmA 8. Suppose ais a positive integer, and x € k[ [t]] with ord z =40,
. In addition, let H.D. M. 8. of &= (do, dy," * *, ds) and [, 2] = (ao,* * *, a).
Then H.D.M. S. of

$a=(ado;' : ';(a_|a|)d0+|a|di;' . -,(a—|a|)d0+la|d3),
[t,aﬂ]=(aao,* : ’,(d—ld')do—l—lallh" : ':(a‘_la'|)a'0+la’|a’ﬂ)
and [t,2], = [¢,2%]

a
Proof. Using the remark after Definition 5 and z¢ = (zlol)lel, it is easy
to prove the statement about H.D. M. 8. of 2% Since
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Kado, (a—|a|)do+ |a| di>

__laldi—]a]| do+ ady—ad, 11
[la|di—Tlaldo+ado |+ |ado|

laldi—]|a|d,

— 1
[a Tdo]|—[a|lds]
d/[,_do
— 41
(| —|di] T
=<d0;di>,

the statements about [¢,2°] and [¢,z],, [¢,2°], are clearly true. Q.E.D.

Lemma 9. Gwen E[[t]] D k[[z]] with ordzs£0, o« if Kk[[¢]]
=k[[¢]], k[[=]] =Fk[[2']], then H.D.M.S. of = with respect to t = I.D.
M. 8. of o’ with respect to ¢ and [t,z] = [t,2"].

Proof. In view of Proposition 2, it is enough to prove the statement
about H.D.M. S.

Since H.D. M. 8. is defined relative to the notion of ord z mod B!l which
is independent of the base chosen for R=Fk[[¢{]] then H.D.M.S. is also
independent of the base. Therefore, let us assume ¢ =1¢" and let

=A@+ N M0,
H.D.M.S. Of x=(do,d1,' ° ',di). ° .)
and H.D.M.S. of /= (o, d's, -+, ds" - ),

clearly dy=ordz=ord2’=d’,.. Now assume d;=d’; for some .

From the remark following Definition 5, dy; —min{j|j€ suppz|;|
< |di|}. In addition
min{j | j€ suppat | | < | & |} = (s— | o [)do+ | 4| di > dosu > 1.

Here
o =min{j | j€suppa, | j| <|ds|}
=min{j | j€supproz, | j| <|di}
=d¢+1. Q.E.D.

From Lemma 9, we conclude H.D.M.S. [ , ], [ , ]- are functions of
a pair of fields.

LeMmA 10. 7 <1<+ - < Ty
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Proof. By the definition of a, <@, @i12> > (@i, @is1> = 745;.  Hence by
Lemma 5

<a'i+1y a’i+2> =T > <a'i: ai+1> = T441.
Q.E.D.

3. G-character sequences and sequences of Galois extensions. Note
that if = is an k-automorphism of finite order of k[[¢]], then it can be
deduced that ordr=p¥ iff ord(+(¢) —1¢) > 1, i.e., 7(¢) =1+ X Mth.

i>1

Lemma 11. Given = of finite order p” such that «(t) =1t + 3 Mtt, and
i>1

a >0 an integer, we have

(1) = (r (1)) = 1 Dt

where
p=0if [i| <|al,if |i]= ]
then
a a
”“=Tl)‘lil Ca THDernA g ]
la] |al la al

with h; a unwersal polynomial over k determined by a.

Proof. For any x € k[[¢]], lel € k[[¢lel]]. Hence py=0 if |i| <|a|.

a

We know that 1) 7(¢)e— [r(¢)lel]lel and 2) raising any element of
k[[t]] to a power p” is equivalent to raising every term to the power p”, i.e.,
(@ + st 4 axt? 4+ )P —a?” + a1 a2t - - <. It is enough to
prove the lemma for the case |a|=1, which is the classic characteristic
Zero case.

In the expression 7(¢)¢ consider the coefficient of the term of degree
a—1- 4, we observe that it contains the term a);, and it does not contain

any term with factor A, for k> j, or any term with factor A\, for &> 1.
Hence

Pa-1ei = 0N+ Po-14j(As,* * *, Ajea).
Let i—=a—1-+44, then j=9—a 41 and
,lhi=a)\vi—a+1+hi()\2:' : "’\4—41)'

It is routine to check that h; is a universal polynomial. This proved the
lemma.

This content downloaded from 128.163.2.206 on Wed, 1 Jan 2014 23:09:35 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

932 TZOUNG TSIENG MOH.

Remark. hy(0,0,- - -,0) =0.

Let z€ E[[t]]ordz5£0, o, kE[[¢]] be a separable algebraic extension
of degree p” over k[[z]], [t 2] = (G0 @1, * *san). [Ea]r= (r," = *,10).
H.D.M.S. of z= (do,dy,* * *,ds), and z=ac+2,+- - -+ 2z, is the
standard expression of .

LemMmaA 12. <a,a,> < 7wV @ € SUPP & —Tp— Ty,

Proof. Let a€ suppa; such that ¢ > ordz; for some ¢ <n—1, then
<ord z;, @y = <ord ;, ord #;,,>. By Lemma 3, a = ord «; implies

<a, ord 4> = ord @, ord 244, > < ord iy, 0rd @ys0>.
Hence by Lemma 4

K@, 01d 405> < <0rd @4y, 0Td Tino) <OTd T4y, 0Td Tiys>.
Repeating this argument several times, we conclude

<y an) < K0rd Tag, Tay =T Q.E.D.
LemmA 13. Let |an| =1 and let = be an automorphism of finite order
p* of B[[{]]; say
r(t) ==t+i§,1)qti X = X p;tt
() = X witi.

Then Vi3 :t—an—+ 1> Tn pmi=n0\igur+ hi(Xo," * *, Mig,) + 1 where 3
1s the coefficient of to in x and h; is a universal polynomial over k determined
by .
Proof. Let r(t2) = (v(t) )2+ X pqt?, then
i>a

pi = 2 atta,i + i
i>a

By Lemma 11
a a
”a’i=TIALé,I_ ___L +ha,i[)‘2>' : ')A'—i _ _a_]'
la] |al la| |a]

Assume 4 is such that i—a,+1>1r, for @€ supp(z—a,— Tuy),
Lemma 12 implies
. Ay —a
t— a4 1> Ta[—1 +1
and for a € supp ., Lemma 3 implies

i—a,,+1><a,a,.>=]‘2”—]‘?__il+1.
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@it e supp # —,. This implies

i(la|—1) > |a|—a

Hence t—a, + 1>

. 1 a
=>%[1—I—a—|] >liln—m

;\'i—an+1>L—%+L

lal
Next let a € suppa, and @ > a,; then it is clear t—a < i—a,. Thus

we conclude pg,¢ is a polynomial in X+ * *, Nig, if @ € supp 2\ay. Also from
Lemma 10

Bans = NnAi-gn+1 -+ han,’i[/\% R} )"b—dn] .

Hence
i = Eﬂwa,i -I— i = lpAigys1 + h'l[)\z; Y M—afn] 'I‘ Nie
Remark. h;(0,0,+ - -,0) =0.
ProrosiTioN 3. If 7, is an integer, then there exists an abelian group

G, of automorphisms of kE[[¢t]] with (only one) higher ramification index
7w and of order | Gy | which fizes .

Proof.

1) Since ord z = p”, any automorphism = with the property
ord(r(t) —t) =1 cannot fix z.

Let = be an automorphism such that ord(+(f) —t) == > r,, then by
Lemma 13

Preay-1 = Ny + 73 7=
and hence +(z) s£ .

2) Let 7(f) =¢4 X Mt? be an automorphism which fixes #, and let
i=rn

T = 2 ﬂiti.
i=p¥
By Lemma 13

M= O Ni-apsr &= Pi[Aes * s Mg ] T VED L i— 0y 41 > 7.
Hence for 3 : 4> 7, + ay—1, \; satisfies
7+ Riraa[Ag e - o5 Ma] =0,
By Lemma 11 and the remark following it, ord(r(#¢) — %) —a—|a|

+r.|a| and the leading form of (+(f¢) —i¢) is I—Z—I Ay lalea-lalralal Tf

This content downloaded from 128.163.2.206 on Wed, 1 Jan 2014 23:09:35 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

934 TZOUNG TSIENG MOH.

@ € supp (¢ — 2, —2ny), We have by Lemma 12,
Uy —a
U > <a,an>=W_1—+1$ |a|rta—rn>an—a-+|a|—1
Sa—|a|+r|a|>rt+a—1.
If @ € Supp Ty, @ > Gny a0d | @ | = | ans | then {ays,a> =c. By Lemma 3
it follows that <a,a,> < {@a—, x> =7, hence by the same reasoning as in
the case of a€ 2—a,y, a—|a|+ra|a|>ra+an—1. If a€suppz, and
a > a, then it is obvious that a—|a|-4r|a| > rn+a,—1. Finally we
note that while

erd (7 (tom1) —t91) =y — |ty | + 70| Ona =10+ an—1
=ord (r(t¢) — o) = ord (v (#*) — 1) Va € SUPP Ty J : {ln-1, &> = Tp.

Hence

O
NMrpt@na — Nana ITnn_ﬁ ,\,rn|0fn-1| 4
a
+ 70 Ta] PV [ IR T T T
where @ € supp (@) With <@y, @> =74,a > any. Thus A, satisfies

a

Tara TP Al A e, =05
| ns | lal

this is a separable equation with exactly | @, | solutions since | @y |>|a|>1.

3) Conversely, take A, which satisfies the above equation. Then
there exists a unique sequence {A..,- * *,A, - *} which satisfies

Naghi + Piapea[Aos* * Mia] =0.

Moreover the automorphism r defined by

7(t) —t+ 3 Mt

i=rn

fixes . By 1) these | s | different elements form a group of higher ramifi-
cation index 7. Q.E.D.

LEMma 14, Gwen 0<r <1y <* - <fTuy, 75 real number, 0 < a,

<o <<, 0 indeger, qo,ms,t e €k and @i, Guad> =1ia.  Let
Y, € E[[t]] such that ordy,ordz540, oo, [{,2]y= (Tn," * *), Tn > Tnq and
ord(y—z) > ord(y).

If y satisfies the following conditions
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1) a€supp(y),t <= a1 <0, 4> =Tiy
a € supp(¥), tny < 8> b, a> > 14y and;
%) a;€supp(y) and v is the coefficient of 1% of y ay=ordy.

Then y —z satisfies 1) and 2) and ord(y —2) = a; if ordy < a;.
Proof.
Case A. ordy=ordz = ay,.

Since supp(y—z) C suppy U suppz condition 1) is satisfied, while
2) is trivially true.

Case B. ordy=ordz=a; < ;.

Suppose a € supp z with as=ordz and a; = ¢ < @511 = @»;. We note that
iy @y = 0> {8y 1,8) =00, i.e., a5%40a, hence we may assume <a;, a> <.
Moreover since <ai, @y = 1> 7'y > (@i, Gis1>, Lemma 5 implies {1, a> > 7nos.
Repeating this argument we find that <., @y > Tpg = 15 ==<As1, &>, 1.€.,
a5~ as and g, a> > ry_y =1,,,. Hence the first part of 1) is satisfied since
supp(y—2) C suppy U suppz. Also a,¢ supp(z) a,>ordz; thus 2) is
satisfled. Now suppose a € suppz and @ > @ny. Since <ai,a> =7y > Tny,
repeating the same argument it follows that <@, 1,a> > 7, 4. We conclude 1)
is satisfied completely.

Case C. a;<ordy=ordz < 1 = Gy 1.

Since <a;, ord Yy = @, G1> = 1441 by 1), it follows from Lemma 3 that
<ord g, @4 > = <@, @441 )>. Suppose @ € supp 2, 4, =0 < gy = @y and a = ord 2.
Since <ordz,ay =1y > 1y = <o0rd 2, a;.,), and

ordz,ap =0 fordz | = a2 a|> e |a] > as] > <asad =,

i.e., hence assume <ordz,ay <oo, then by Lemma 5, {@.,a> > <ordza>
> Tnq. Successively (@i, @) > 1yy =75, i€, a5%a; and g, @Y > Ty
> rg1. Hence the first part of 1) is satisfied since supp(y—2) C suppy
U suppz. While as¢ supp#V as > ordz, thus 2) is satisfied.

Suppose ¢ € suppz and @ > @,;. Since <a;,a> =1, >r,, repeat the
same argument <@, i,a) >7,5. We conclude 1) is satisfied completely.

It is clear from the above argument ord(y—z) =¢; if ordy. < a;.

Prorostrion 4. If r, is an integer, let k[[w]] be the fized domain of
G, n Proposition 3. Then

[w,a:]=<#¢°— L S M)

lan—ll ’ lan—ll,' K 'an—ll
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and

[(") w]r = (7'1> Toy™ * 7 7’»—1) .
P i
roof. Since <@, Gid =<+ l am_ I’ Ta

Tas] >, it is enough to prove the
1
statement about [e,z].

(L

From Lemma 9 we know [¢,2] and [w, 2] are independent of the chosen
basis, so we can assume

o =11+ N\t
i>q
=t 3t
i>pr
= ol? 4 D &ol
>pvlq

where ¢ = an |.
Let No = 1, N = MPay 0 <= apy.

By Lemma 8 [{,&0?] = [{, 0] = (r,), and since x satisfies conditions
1) and ?) of Lemma 14, we conclude
g—[o?lif 3 &ot]
v=i>pv/q

satisfies conditions 1) and 2) of Lemma 14.
To conclude the proof, we need only prove

Qi1

1) a€supps(z) and%<a§ p

A Qi

=><—, >_< s >——Tm

V@—l—lén—l
and

a;
R) 'q‘ € suppo () and &,/ = pa; =
Vi=n—1.

Proof. Suppose 1) and 2) are true for all a€supp,(z), a=c and
a; = c for some c. Let

e[l gt] = ot

c>i>pvq

= £t -

where £0? is the leading term.
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Since z — [w?/4+ ¥ &wf] satisfies condition 1) and 2) of Lemma
c=i>p¥/q
14, <@y, qd> =i if 0, < ¢d = a4 Also since

p—[oli 3 of]

c>i>p¥/q

satisfies conditions 1) and 2) of Lemma 14, if

ordi[z—o?l1 L ol —{e] =

>i>plq
for some a; = cq then a;— qd and & —1;. Hence 1) and 2) are proved for
all a € supps(z)a=4d and all ¢, =d. Q.E.D.
Now let e =9, -+ 41+ * - -+ yny Where y; = > ol it i <n—1
ai/¢>i=ai1/q
and y,y= X  &ol. Then from Proposition 1 and conditions 1 and 2,
iZan-1/lan-|
this is the standard expression of z with respect to w. Hence
o Qo Qay R \
)= (] TacT - TaeT):

Q.E.D.
From Proposition 4 it is easy to conclude

ProrositioN 5. If [¢,z],= (1, * +,7) 1S a sequence of integers then
there exist a chain of power series rings k[[¢]]1 D k[[y:11D -+ + D k[ [%n-1]]
D k[[«]] such that each is a galois ewtension of the next one with higher

| @i |

ramification index r; and algebraic degree T ] respectively.

Lemma 15. Let y,2€ k[[t]]ordy, ord2540, . Suppose
[t y] = (dp” + ao, dp” +- a1, -+, dp” + an), [t 2] = (pao, pas,~ + -, pain)
where p* = | ao |, dp? 4 ao > pay [t,2]r= (11,75, * -, 7). Then
1) of <pao, dp” + a> <1y then [tz ylr= (ro, 71, * *,7n)
where 1o = {pa,, dp” + a,> and
) if {pao, dp” + o> =1y then [t,z-+y]= (ry,- - -, 7).
Proof. Let

Y=Yo+Y+ -+ Y
p=totut Tt

be standard expressions and z =y 2. It is easy to check that

(8, y]r= (11,72, * *,70).
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1) It is enough to show

[t, 2] = (pao, dp” + ao, dp” + as,+ * +, dp” + an).

From our assumption ordz = pa,. Qiven a€suppz, it follows that
<ord z, ay = Cord z,ay =1, > <ord z, dp” 4 ao», and dp”+-a, ¢ suppz. Sup-
pose a€suppy and a>ordy=dp” -+ a,; then since <dp” -+ ap,a> =1,
> {aop, dp” + ao). Lemma 1 implies that <aop, ap > <aop, dp” + a> = 7.

Let =2+ 2.+ + -+ 24y be the standard expression of z. From
the above argument ordz,=pa, and ordz, —dp’ -+ a,. Moreover, since
|dp” +ao|=|a|=|os | p=]|pas| if pa,=dp’+a,, it follows that
71 = {Plo, Pas> = {Pao, dp” + o>, hence pa, > dp” 4 a,. Furthermore since
{Plo, Pas> =11 > {Pao, dp” + a,>, we have <dp” + ao, pa,> > 7, by Lemma 5.

Sippose we have proved

ord @j,; = dp” + a;
Py > dp” + a;
Ap” + a5, pajay > 1 VO=j=1<n+ 1.

We will make induction on 1.

Let a€suppy, a > ordy; then <dp’+ ai,a> =ri:. Also

a > dp” + 04,0 € SUPP ¥ => AP + a5, &> > T4u1.

To show orday,,—dp’+ ;s we must show that dp” 4 ay, 7&‘ supp 2,
dp” +a;, 0> > 1V a € supp z, @ > dp? + a;.

By Lemma 3, <dp” + @, pi> > i1 = <&, Plins> & € supp z; @ > dp” + a,.
By Lemma 6, we conclude that <dp” 4 a;, > = <dp” + a4, pasa> > gisa.  For
any a > pai.; @ € supp z, we have P, @) = 7o > 1i4q = AP’ + i, dp” + is1>.
By Lemma 1 {dp” + a;, a> > <dp” + a;, dp” + Qi1 = Tisq @ = Piyy, & € SUPP 2.
Hence dp” + 4,4 ¢ suppz and ord z;., = dp? + ay,.

Since I ap” + ti | = | Qi1 | = I Qiyo lp:
Pl = AP” + Gy > AP” + @i, Ap” + ivrd = AP - @i, paiss).

Hence we conclude pa;.s > dp” -+ @;.s.

Since {plisi, Plivey = Tivz > AP - @iy Ap? + Aiad>, <APY + iy Plisad> > Tin
= dp” + a;, dp” 4 @3.1> and | pass | > | dp? + s |, we conclude by Lemma
U that <dp” - @i, Plise) > PUist, Plied = Tiso

The inductive process is proved.
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2) By Lemma 1

{Pao, Ap” + oy =11 =<K dp” + o, AP” + a1 > {pao, dp” + a:) =11
Hence it is enough to show [¢,z] = (pao, dp?” + as,* - -, dp” 4 aw).

From our assumption ordz=pa,. Since |dp”+a;|=|a.| <|as|-p
=|pa;| and <apo, dp” + ;> = <pao, pas> =11, dp”+a; > pa;.  Given
a € supp# with a > pa,, since pay,a> =1, > = {Pay, pa;>, by Lemma 1
it follows that {pao,ad > {pao, pa;> —ri, hence dp” -+ a, ¢ suppz. For any
a€suppy with a < dp? 4 a4, since <dp” -+ ao, a> = 11 = {Pao, dp” + ao>, by
Lemma 1 it follows that (pa,ad=r;. While for any a€suppy with
a > dp? 4 ay, since dp? + ai,a> =1, > ri=<pao, dp” + a,>, Lemma 1 im-
plies (pao, ay > r, = <pao, dp” + a3

Let =2+ 2, ++ - -+ 2, be the standard expression of z. From the
above argument ord z, = pa, and ord z; = dp” + a,. Moreover, since | dp” + a4 |
=|a|=]a:|p=]pa.| dp* 4 a, ¢ supp ie., dp” + as 5= pa, and {pao, pas)
> 1y ={pao, dp” + a.>, it follows that pa, > dp”+ a,. Furthermore, since
Py, Pasd> =13 > 1= pay, dp* + a,> (Lemma 3), we have <dp” -+ ai, pa.>
> 7, by Lemma 5.

Suppose we have proved

ord z;=dp” -} a;
Pajia > dp” +ay
Ap? + a4y, pajad> > 1 VO j=i<n

We will make induction on 4.

Let a € suppy with a > ord y, = dp” -+ a; then <dp” -+ a;, > = 1. Also
a > dp” + G, @ € supp y=> <dp” + a;, > > r5. To show ord x4, — dp” + a4y
we must show that dp”-+ a;,€suppz, <dp”+ay,a> >V a€suppz,
a> dp” + a;.

If a€supp(2o-+- - +24) with a>dp’+a; then |a|=|pai]
> |dp” 4+ a;| and {dp” + ai,a> — 0, hence it is enough to show that

dp? + @iy f supp 2, <Ap” + @i, &% > 1311 V @ € supp (2 + 20 4+ -+ 20)
with a > dp” + a;.
By Lemma 3, <dp”+ ai, pais> > Tiv1 = <8, Plis DV a € supp z;, a > dp” +a;.
By Lemma 6, we conclude that <dp” + a;, a> = <dp” + as, ptissd> > gisa.  For
any 6 > P, € SUPP 2, Plig, O = Ty > Ty = Ap¥ + a;, dp” + ai1>. By

Lemma 1 <dp”+ ai,ay > Kdp? + i, dp” + @411> =741 Y @ = Plyss, @ € supp 2.
Hence dp” + a;,y ¢ supp z and ord ., = dp” + aus.

11
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Since

| dp? 4 s | = | tia | = | @ia | - P, P2 = dp¥ 4 @i

> <aAp” @i, Ap” - @ixd = APY - s Plise.
Hence we conclude pai, > dp? + ais.

Since {Pisi, Pllive)y = Tisz > AP + Uiy AP” ~+ Qins D, <AP” + Wiy PAia> > Tina
= dp” + ay, dp” 4 a441> and | pas., | > | dp” + @i |, one concludes by Lemma
7 that <dp” + @i, Plissd > {Plis; Plised = Tiso.

ProrositioN 6. Let kE[[t]] D k[[w]] D k[[z]] be a chain of separable
algebraic extensions of algebraic degree p* and p respectively. If [t, o],

= (ry," + ,1) and [w,z],= (D) are two sequences of integers then [t,z],
s a sequence of integers.

Proof. By Lemma 9 we can choose v,

T =o? —}—.g,u,i(oi
where m= (p—1)b+1, |m| =1, pns40.
Let
[t)‘”]= (@oy a1y~ = 5 an), Qo =p”
[t)“’]7= (r5 7257+ 5 Tn)
and let

o=0¢F o+ + o

be the standard expression, then by Lemma 9 and Lemma 8

[t,2—oP] = (mp”, (m—1)p? 4 as,- - -, (m—1)p” 4 an)

[t)x_""p]7‘= (1‘1,7'2,' : ‘,Tn)
[4, 0] = (pao, pas,* - -, pan)
[t) “’p]r = (7‘1) L TR ’I‘n)

and

0P =0+ o+ - w?

is the standard expression. Let ¢ —o? =1y, -+ 9, +- - - &+ 9, be the standard
expression, then

=0 +of +  F ol + Yo+ Y+ Yne
Now suppose b <7, or b=r;. Then by Lemma 15,
[t 2]r= (b, 71,12, - =, 70) O (11,75, * ,T0).

Hence we can assume b > 7y,
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Let @ = X z; be the standard expression of z. _Then it is trivial to check
that ©— X 2; = > ; is the standard expression of z— > ;.

i=c i>c i=c

Since {pao, mp*> =">b > r, and <mp”,a> =V a € suppy, a > mp?, it is
clear by Lemma 1 that {pa,,a> > V a€ suppy.

Hence ord @, =pa, and pa, ¢ suppy. Let a € suppy,, then
la]|>[(m—1)p" +a[=]ail,

hence |a|=|pa,|. Thus {pa,,ay = o V a€ suppy, with a > pa,. More-
over since |(m-—1)p’+a,|=]a,| <|pa,| and

Py P> = Pllo, (M —1) p? 4 a1,
one concludes (m—1)p”+ a, > pa,. Hence

[t,$—$0]=[t,wlp—l—' ' +mnp+y1+ : +yn]

and
[Lz—zal,=[to?+ - o+ 4+ -+ Yulr
We have
[t 0?4+ - -+ o] = (pas,- - -, pan)
[75;?/1-|-' : +yn]=((m=1 )PP A ay, s - o, (m—1)p¥ - an)
[t, 0?4 - '—}—wnp]r=[t,(o11’—|—' ’ '+wnp]r=(7‘2>' CtyTa)
and

p* > ||, (m—1)p” + ai > pas.
Moreover, let b, = <pa,, (m —1)p” + a,>

_(m—1)p"+a—pa,
 rplal—la]
_ m—1 p’ o
Cp—1 |a] o

11

j+
P’ !
=) |a—1| — |71—| + 1=0,.
We note that b, is an integer.
By Lemma 15 if b, =7, then [{,2—2],= (by, 79,75, = -,70) O
(roy 1, = 1),  Hence [t,a]=(r,by, 1,70 * <,70) OF (r1,72,° © ", T4).
Now we can assume b; > r,. Successively we assume for some ¢=10

[t,2—=zo - 2]

=[t)‘-°i+1p+' . ‘+wn1’+yi+1—|—- . —|—yn]
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[t,:z:—a:0~ : x@]r

=[t,wi+1p+‘ : "I‘wnp‘l‘?./iﬂ‘l" : '+yn]r
[t:“’iﬂp‘l"' : "I"“’np] = (Pam:' : ':pan)
(64 - -yl = ((m—1)p" +ais, - -, (m—1)p" + an)
[ty 0ia? 4+ 0flr=[L,90a 4+ * =+ Ynlr

= (’ri+2:' : ';’rn)
P> | as |, (m—1)p” + G341 > Pty

and let
biw = {Piss, (M —1)p” + 11>

_(m—=1)p" 4 tsa —
P @iy | — | i

14

Plisa +1

Qi1

S 1,
plamn] Taml TV

be an integer.

By Lemma 15, if by = 4.0, then [{, 22— * - @ilr = (Diss, Tisos * "5 Tn)
or (7ig,* * *,7,). Hence

[t:w]r= (7'1:’ ERERLTET) bi+1:"'i+2,' : ',rn) or

(7'1;' : .)r’i+1)7”i+2’. * ',7'”).

Now we may assume by > 70
Since <pasa, (Mm—1)p” + @i1> = by > 7340 and

(m—1)p” + tua, > = 132 V @ € SUPP (Yira + -~ -+ Yn)>»
a> (m—1)p”"+ iy,

it is clear by Lemma 1 that {paj.i, a> > 732V @ € supp (Ysur + - -~ 9n).
Hence ord @;,, = pas.o and pai,s ¢ Supp(Yisa 4+ =+ ya). Let a € supp g
Then |a|>|(m—1)p”+ @45 | =| a2 | and hence |a|=|pas.|. Thus
{Pliyzy @ =00 V¥ @ € SUPD Yiu1, @ > Pl Moreover, since |(m—1)p” + Gz |
= | Gue | < | Passz | and by <pas, paid = Py, (m—1)p? 4 @iy one con-
cludes (m—1)p” 4+ @iz > Pliss.
To finish the inductive process, we need only to show

bi+2 = <pa"i+2; (m —1 ) P" + a/i+2>

b Z) ai+2 1
Tama]  Tame] T

is an integer, which is celar. Q.E.D.
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CororrarY. Let k[[¢]] D k[[w]] D k[[z]] be a chain of separable
algebraic extensions of algebraic degree p” and p respectively. Let

[t,w] = (a’O: Ay, - ':an): [t:w]r= (7'1;7'2:' : ':Tn);
»=(b),b =b,...,b=b_l’_y__,_ﬁ“"+_1 1, byy — bP— .
[“’:x] ( ) 0 i |a¢+1| |a¢+1| -+ 1 1298

If by>ri 0=t=n—1 then [{,z],= (T1," * *,Tny buy). Otherwise, let 1
be the smallest integer such that by =ry,. Then b; < ry, implies

[tsw]r= (”‘1:' C e Day Tigay ',7’,,),
and

bi=ri+1$ [t:x]r= (7'1:' C T T, ':"'n)-
Proof. It is clear from the proof of Proposition 6.

The following proposition will justify the term pre-higher ramification
index.

ProrosiTion 7. If E[[t]] is a galois extension of algebraic degree p*

over k[[z]] then [t,x],=sequence of higher ramification indices.

Proof. Let

[t,fl?]r= (7'1)”'2)' ’ ‘,7””)

T=axt+x, 4+ -+,
be the standard expression.

We divide the proof into several steps.

1) Given r an automorphism ord(r(¢) —¢) =747V i, we proceed
to prove 7()4z. If r>r, then by 1) of the proof of Proposition 3
r(z) s~ z.

Now suppose 74,1 > 7> 7 for 0 =1=n-—1, where r,—20. Since
(@) —z=r(zota.+" - -+ )
— @+ @)+ (@t ) — (Tt ),

it follows from 1) of Proposition 3 and Lemma 8 that
ord(r(ao b+ ) — (B0 - < a0)

a;

=(7+W—1)l¢t|=T|ai|+ai~|ai|.

For any a € supp (s —+- * - +,),

ord (r (t)e — i) — (ﬁ—l +n)al=r|a|+a—]|al
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If |a|=|a] clearly r|a|—|—a—|a|>r|aa|—{—a¢——|a¢|, while if | o]

a—

< l aq |} then 7 < <6Li; 0/> = m —|— 1 1mphes

rla| +o—]a|>r|a|+a—|al.
Hence we conclude
ord(r(z) —z) =ord(r(zo+ = "+ @) — (o4 - -+ 2))

=r|a|+a—|a|#wo;
e, v(z) #w.

2) Suppose ord(r(¢) —¢) = r; for some 0 <i=mn. Since
0d(r (2ua - ) — (@t ) >nla] fa—|al,

ord(r(zo 4@+ @) — (w4 - F @) Srila|+a—]al
Using the same reasoning as in 2) of the proof of Proposition 3, we conclude

that the coefficient y, of ¢ in (¢) satisfies

a a
ﬂaillai1|/\4la"ﬂ "I"?al_a‘lMlal"{" c

a;
lai] —
+ 74 |(lq',—1 | Ar 0.

This expression has T different solutions.
¢

3) Let G=0G.>G,>" - > Gy be the sequence of the higher rami-
fication groups. Then by 1) and R)

—ord G=1ord Gi/Gis =M | a; | /| tisa |
—la|=p

hence ord G4/ G4y = ||a2_1||' We conclude any 7; is a higher ramification index
v

and ord G,/ Gy, — | i"‘;l'
CororLrAry. If k[[¢]] D k[[2]], orde=p”, [t, @], = (1), then E[[t]]
is galois over k[[z]] &= ry is an integer.

Proof. = Proposition 7.
& Proposition 3.

Lemma 16, Given k[[¢]] D k[[w]] D E[[x]] where k[[t]] is a galois
extension over k[[v]] of algebraic degree m3: |n|=1, and k[[o]] is a
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galois extension over k[[x]] of algebraic degree p. Then there exists k[[y]]
such that E[[t]] is a galois extension over k[[y]] of algebraic degree p, and
E[[y]] is a galois extension over k[[z]] of algebraic degree n.

Proof. We can choose ¢, w, ¢ such that

b= oUn, 3 — P 4 N =1 =t AP 4 A5£0, | m .

Let y=at"—=tr 4 %t"m“("*)l’ +- - -. Then

[ty = pymn— (n—1)py = ZpE p 1= nfo, 2], + (n—1).
Hence by the corollary and Proposition 3, k[[¢]] is a galois extension over
E[[y]]- Q.E.D.

TuroreEM. Given k[[t]] a separable algebraic extension over k[[z]].
Then there exists a chain of successive galois extensions between k[[t]] and
E[[z]] if and only if [¢,z], is a sequence of integers.

Proof. & Let orde=a. Since [¢,zll/e],—[¢ z],, Lemma 8 shows
that it is enough to prove the case | @ | =a, which is Proposition 5.

>

Using Lemma 16, we can assume there exists a chain of galois extensions
between k[[¢]] and k[[xzl®//e]]. Since [¢,zlol/e], = [t,z],, Wwe can assume
lo|=a=p"

If v=1, then from Proposition 7 [¢,z], is an integer. Using mathe-
matical induction and Proposition 6, the theorem is proved.

4. Least Galois extension and G-character sequence.

Lemma 17, Gwen [t,x],= (ry,7re,- - -,7m), H.D.M.S. of « with
respect to t= (do,ds," * +,ds), |a|=1. Then

[t/a, atle], = (ary— (a—1),ar,— (a—1) - -+ - ar,— (a—1))
and

H.D.M.S. of z'¢ with respect to
e = (do,ad; — (a—1)do," - -, ads— (e —1)d,).
Proof. 1t is clear that
H.D.M.S. of z wilth respect to ¢/« = (ad,,ads," - -, ads).
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By Lemma 8 we conclude
H.D.M. 8. of «'/¢ with respect to

1o — (dy, ady— (a—1)do,- * *,ads— (a—1)d,).
Since

|do| >|di|i>0,<ad — (a—1)dy, adj— (a—1)do> = aldi, d;j> — (a—1)
0=i<j=<s.
Hence by Proposition 2,

[tve, gtle], = (ar,— (a—1)," - -, arn— (@—1)).

The following proposition is a generalization of one of Professor Abhyan-
kar’s lemmas: the least galois extension of a p-extension is tame.
PRrOPOSITION 8. Suppose [t,¢] = (ao, @), o =17, | as | =1 [t,2], = (r1),
v—1
and [t,y] = (bo, b1), bo=p*, | b1 | =1 [t,y]r = (s1). Let a= @y:pi,—a;_—l)
Then K[[te]] is the least galois extension of k[[x]] containing E[[¢]].
Moreover, the galois group of the least galois extension of k[[z]] containing
E[[]] off (»—1,a,—1)=(p*—1,b,—1) and by —1=a,—1(p*—1).

Proof. By Lemma 17, k[[tY¢]] is galois over k[[zY/°]] iff ¢r, is an
a—1
p—1
any ¢ < a, k[[t*/¢]] is not galois over k[[z'/°]]; hence E[[#*/°]] is not galois
over k[[z]]. It suffices to prove k[[#*/e]] is galois over k[[z]].

integer. Since r; = <@, ;> = ¢ry is an integer iff @ | ¢. Thus for

Let /¢ =w, 77(0) =60%0 0 =1 < a where 6 is an a-th primitive root of
unity, and let G be the galois group of k[[w]] over k[[z'¢]]. Since
z€k[[t]] =k[[0*]], « is fixed by 7 0 =4 <a. Since k[[0]] is of degree
ap® over k[[z]], it is sufficient to show:

¢Ti=7TTj$ q5=7r,‘ri=Tj
for any ¢, 7€ G.

Let the higher ramification index of G be r. Then r—ar,— (a—1)

by Proposition 7 and Lemma 17. Given any ¢ € G let

¢(0) =04 Apo" 4+ - -,
Then ¢ =m &> Ap = Ar for any ¢,w€ G. Suppose ¢r* ==/ ; then

¢7i(w) =0iq5(w) — Gl —|—0"’)\¢w1'—l— PN
=,,-7-f(w) =07w—|—01h"¢')’~{—- .

Hence 6% =6, \p = Ar, L&, =1, p=m.

This content downloaded from 128.163.2.206 on Wed, 1 Jan 2014 23:09:35 PM
All use subject to JISTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

POWER SERIES RINGS. 947

We have proved that E[[¢'/¢]] is the least.galois extension of k[[«]]
containing k[[¢]].

Before we proceed to prove the conditions for isomorphism, we study
more closely the galois group H of k[[t*/¢]] over k[[z]].

The multiplicative rule af the group H is

(82%) () = § (st 0
where
(rtart) (0) =0+ LD -+ - -
herce
rirrte Q.

Since the inner automorphisms induced by {r*} define a group of auto-
morphisms on G as a vector space over the prime field, G can be written as a
direct sum of irreducible subspaces under the group of automorphisms. ILet
G=0G1+ Gs- - +,+ Gm. Since Apigr-+=0%"D\;, G; is isomorphic to the
additive group of P(¢7-*) where P is the prime field. Now H is isomorphic
to the group of m 4 1-tuples (Ay,As,- * -, Amf%) where A\;€ P(6™1), and the
group structure is defined by

(Al})\ib' : ',)\,,n,ﬂi) : (Hl)l"b' "}I"m;aj)
— ()\1+9i("‘1)p.1,' . .,/\m_l_oi(rq)M’ 0i+j).

Now we proceed to prove the conditions on isomorphism.
Let H* be the galois group of the least galois extension of %[[y]]
containing %[[¢]]. Then the order of H equals the order of H* since

ord(H) — pa=p ”‘1 ),ord(H)_pGJ’”——kl:-ﬁ, it is ob-

vious (p*—1,a,—1) —(p —1 b, —1).

Let the isomorphism be f: H— H*, and g¢,t, g*r« be the inner auto-
morphisms induced by ¢ on H, H* respectively. Then fgri(x) =f(vtnr?)
=f(+)f(x)f (") = g*;(n+f(x). Thus the cardinal number of the orbit
of 7 under {g-!} equals the cardinal number or the orbit of f(x) under
{g*¥s} since f:{r'} — {+'}. Hence

r—l=ar,—(a—1) —1
=a(r;—1)=a(s;—1)mod(a)
ie.

a—1 ] pr—1
pr—1 (p”——l a;—1) p”—l (pr—1,a,—1)

mod (a).
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Hence we conclude:

a,—1=b,—1mod(p*—1).
&

It is clear from our discussion on the representation of H as m - 1-tuples.
Q.E.D.

The following corollary follows from the proof of the preceding
proposition.

CoroLLARY. The galois group of the least galois extension is abelian
iff a,—1=0(p*—1).

The following proposition is pointed out by Professor Abhyankar.

ProrosiTION 9. Suppose orde=p*. If [t,x],=(ry, - ,m) 18 a
sequence of integers, then the least galois extension of k[[z]] containing
E[[t]] is purely wild; 1. e., the corresponding algebraic degree is p* for some u.

Proof. Tf ordz = p, then k[[t]], is galois over k[[z]]. Therefore we
assume ordz = p” for some v >1. By our theorem we know there exists

a w€ k[[¢]] such that E[[¢]] 5 k[[w]]g E[[2]] and [e,z], is a sequence
of integers. Assume the least galois extension of %[[«]] containing k[[e]]
is purely wild over k[[z]] and call it k[[y]].

It te k[[y]] then E[[y]] is the least galois extension of %[[x]] con-
taining k[[¢]], hence we are done.

If ¢ ¢ k[[y]], let k[[2]] be the integral closure of k[ [y]][¢] in k((y,?)).
Then %k[[2]] is a galois extension of degree p over k[[y]], and the least
galois extension k[[w]] of k[[«z]] containing %[[¢]] is the one containing
o

Imbed k[[2]] in an algebraic closure @ of k[[=]]. Let %[[2]] be the
conjugates of k[[2]] under the k-automorphisms of @ which induce %[[z]]-
automorphisms on %[[y]]. It is obvious that k[[z]] is galois over k[[y]]
with isomorphic galois groups for all 4. Since %[[u]] is the compositum of
all k[[#]], we can imbed the galois group of k[[u]] over k[[y]] in the
direct sum of the galois groups of %[[z]] over k[[y]] for all 4, which is
isomorphic to a finite divect sum of the galois groups of k[[2]] over k[[y]].
Hence the galois group of k[[u«]] over k[[y]] is a subgroup of a group of
order p* for some A. Thus the order of k[[u]] over k[[z]] is only divisikle
by p. Q.E.D.

5. Saturation and G-character sequences. We summarize the proof
of Proposition 3 in the following lemma.
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Lemuma 18. Given [t,2] = (@0, @1, * 5 0n), [t 2]y = (1, - -, 7a) and
a group G of automorphisms of k[[¢]] with higher ramification index r, then

1) 7547 4 implies ord (v(¢) — ) =min ord ((¢*) —¢¢) where a runs
through supp(z), € G.

laia |

2) r=mrord G > Tal implies min{ord(+(z) —z)| r€ G}
—min{ord (¢) —t¢ | 7€ G a € supp(z)}.

ProposiTioN 10. Let z,y€ k[[¢]] with ordz=p’, ordy=m with
m>p’, |m|=1, 0=Fk[[z,y]]. Suppose [t,z],= (r:). Then the satura-
tion 0, of O with respect to x is 04 SM®+ M™ where M is the mawimum
ideal of k[[¢]] and b runs through all integers less than m with <b,m) =ri.

Proof. By Proposition 8 let &[[£/¢]] be the least galois extension of
k[[2]] containing k[[¢]], G be the galois group of k[[¢*/e]] over k[[z*/]]
and let r be the higher ramification index of G. Let 7% be the automorphism
defined by =¢(¢%/¢) = §%¢*/* where ¢ is a-th primitive root of unity.

Clearly Mm™ C 0,. Let z€ M? for some b <m with <b,m»=r;. By
Lemma 3 {¢,m> =1, c€suppz and ¢ < m. To show 04 3M>+ M™ C 04,
it is enough to show that ¢*€ 0, b < m and ¢b,m» =r,. Since for any =€ @,
we have

ord (w(£?) —t?) =ba—|b|+r|b|
ord (= (™) — ") —mam—1 1.

Furthermore
<b,my=m

implies

m—Db

ro[—it'=n

~————TZ%|_ ba +a=ar

f:—;l—_—l—l- 1=ar,— (a—1) =r.
Hence

am—14+r=ba—|b|+7r|b].
Thus

the ()m, b <m and <b, m}>.

On the other hand, suppose z€ 0, By subtracting some element in
0, we can assume |ordz|<p”. Using Lemma 18, we conclude that
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ord(x(£?) —¢?) =am—1-+r b€suppz. Reversing the above calculation
we conclude

Kb,m>=r;, b<m, b€csuppz.
i.e.,

2€0 - SM> 4 Mnm Q.E.D.

CoroLLARY. Suppose 2€0, ordz=yp” and [t,2]=(s1). If ss=mn
then 0, C éz.

CoroLLARY. If ordz=yp then the saturations are independent of trans-
versal parameters.

Remark. In general saturations are dependent on transversal parameters.
If G-character sequences are different, then the saturations could be different
with the same least galois extension and the same galois group.

The following example is about a case such that [#, #], is not one number;

Ezample. Let k& be an algebraically closed field of characteristic 2,
E[[¢]] be a powerseries ring, and #,0 € k[[¢]] with

0—18 4 15 4 17
w=w3_‘_w7=_t9+t15+t21+t23+t25+t27+. CE
Since [, 0],= (2), and [¢,z],= (R.5) we have by Proposition 2 that
there exists at least 9 different automorphisms which fix z. Hence k[[¢]]
is galois over k[[z]] with abelian galois group.
Let y=11% A2+ ¢, A€ K, A521. Then y is not fixed by any of the
9 automorphisms because [¢,2—y].=(3). Hence k((z,y)) =k ((¢)), and
E[[t]] is galois over k[[x—y]] with abelian galois group.
Now it is routine to check ¢* € 0,-,, while ¢ ¢ 0,.
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