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PREFACE.

STUDY of the early mathematical work of Leibniz seems

to be of importance for at least two reasons. In the first
place, Leibniz was certainly not alone among great men in pre-
senting in his early work almost all the important mathematical
ideas contained in his mature work. In the second place, the main
ideas of his philosophy are to be attributed to his mathematical
work, and not vice versa. The manuscripts of Leibniz, which have
been preserved with such great care in the Royal Library at Han-
over, show, perhaps more clearly than his published work, the great
importance which Leibniz attached to suitable notation in mathe-
matics and, it may be added, in logic generally. He was, perhaps,
the earliest to realize fully and correctly the important influence
of a calculus on discovery. The almost mechanical operations which
we go through when we are using a calculus enable us to discover
facts of mathematics or logic without any of that expenditure of
the energy of thought which is so necessary when we are dealing
with a department of knowledge that has not yet been reduced to
the domain of operation of a calculus. There is a frivolous objec-
tion raised by philosophers of a superficial type, to the effect that
such economy of thought is an attempt to substitute unthinking
mechanism for living thought. This contention fails of its purpose
through the simple fact that this economy is only used in certain
circumstances. In no science do we try to make subject to a mechan-
ical calculus any trains of reasoning except such that have not
been the object of careful thought many times previously. Not
only so, but this reasoning has been universally recognized as valid,
and we do not wish to waste energy of thought in repeating it
when so much remains to be discovered by means of this energy.
Since the time of Leibniz, this truth has been recognized, explicitly
or implicitly, by all the greatest mathematical analysts.



iv PREFACE,

It is not difficult to connect with this great idea of the im-
portance of a calculus in assisting deduction the many unfinished
plans of Leibniz; for instance, his projects for an encyclopedia
of all science, of a general science, of a calculus of logic, and so on.
These projects, however, do not come within the field of this essay,
which is a collection of various articles which appeared in The
Monist from 1916 to 1918; our concern will be the various influ-
ences on Leibniz in his earliest original mathematical work. Merely
biographical details do not seem to be relevant.

In writing the following pages, I have been greatly influenced
and helped by the emphasis laid by Mr. Philip E. B. Jourdain
upon the importance which Leibniz himself attached to the no-
tion of a calculus in general, and his own operational calculus in
particular; he it was who also suggested that I should undertake a
critical translation of the early mathematical manuscripts of Leib-
niz; to him also I am greatly indebted for many points upon which
I was unable to make up my mind on the evidence that I could get
from the manuscripts alone. I have also to thank Mr. W. J. Green-
street for looking through my articles before they were assembled
for the purpose of this volume, and for making some valuable sug-
gestions. My excuse for publishing these manuscripts, enlarged
with so many and such long critical notes, must lie in the fact that
I have made a careful study of the work of Barrow, and have
recognized, perhaps at more than its true value, though I do not
think so personally, its great genius and the influence it had on
Leibniz. The opportunities it was capable of affording to Leibniz,
the greater likeness that the work of Leibniz bears to that of
Barrow than to that of Newton, have forced me to the conclusion
that Leibniz was in no way indebted to Newton for anything, yet
his statement in a letter to the Marquis d’'Hospital, that he was under
no obligation to Barrow for his methods, is absolutely correct.

J. M. CHib.
Dersy, ENGLAND, September, 1919.
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L
INTRODUCTION.

-PART from the intrinsic interest which the autograph
writings, and more particularly the earlier efforts,
of any of the prime movers in any branch of learning pos-
sess for the historical student, there is a special interest
attached to the manuscripts and correspondence of Leibniz.
They are invaluable as an aid to the study of the part that
their author played in the invention and development of
the infinitesimal calculus. More especially is this so in the
case of Leibniz; for the matter, upon which this essay is
founded, unearthed by Dr. C. I. Gerhardt in a mass of
papers belonging to Leibniz that had been preserved in the
Royal Library of Hanover, contained holographs pre-
viously unpublished. '
The most important of these, for our purpose, were
edited, with full notes and a commentary, by Gerhardt, in
three separate volumes, under the respective titles:

1. Historia et Ovigo Calculi Differentialis, a G. G. Leib-
mzio conscripta. Hanover, 1846.

2. Die Entdeckung der Differentialrechnung durch
Letbniz. Halle, 1848.

3. Die Geschichte der hoheren Analysis; erste Abthei-
lung, Die Entdeckung der hiheren Analysis. Halle,
1855.%*

.. ¥ For abbreviations used in this volume for these and other works, see the
Bibliography given at the end.



4 THE EARLY MANUSCRIPTS OF LEIBNIZ.

The present time,' the two-hundredth anniversary of
the death of Leibniz, would seem to be a most suitable
one for publishing an English translation of these manu-
scripts.

For the present purpose, it will be convenient to group
the manuscripts in two sections, of which the first will con-
sist of Leibniz’s own account of his work. Under the
heading § 1, (p. 11), is given a fairly literal translation of a
postscript from Leibniz to Jakob (i. e., James) Bernoulli,
“which was written from Berlin in April 1703, and then
cancelled and a postscript on a totally different subject sub-
stituted.”* This is a communication to a more or less in-
timate friend. It is therefore naturally not such a con-
sidered composition as the second account that Leibniz
gives of his work in the Historia mentioned above, of which
a full translation is given below under the heading § 2.
It is important to bear this point in mind when comparing
the two accounts together, for any slight discrepancies
that may be noticed are, feasibly at least, to be accounted
for by the different circumstances of the compositions.
The latter account bears the impress of being fairly fully
revised and made ready for press, and the facts marshalled
to make an impressive or, as some would have it, plausible
whole; it was probably finished just before the death of
Leibniz, and represents his answer to the Commercium
Epistolicum of unsavory memory. The death of Leibniz
in November 1716 was probably the cause which prevented
its publication, or at least the chief reason.

It is not my intention to enter into a discussion about
the Commercium Epistolicum; this has probably had the
last word said upon it that it is possible to say with the
help of the existing authentic material that is possessed
by the present-day historians of mathematics. Further,

1 This appeared in The Monist for October, 1916,
2 G. 1848, p. 29; see also G. math., I11, pp. 71, 72, and Cantor, III, p. 40.
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I hold quite other views as to the possible source of Leib-
niz’s inspiration, if indeed he is not to be credited with
perfectly independent discovery. I will therefore, as far
as I may, refrain from allusion to the Commercium Epis-
tolicum, except to second the plea of its perfectly disgrace-
ful unfairness, as made by Leibniz.® I have suggested
above that the Historia was intended by L.eibniz as a state-
ment of his side of the case, and as an answer to the attack
made upon him. This account of his work, although writ-
ten in the third person, “by a friend who knew all about
the matter,”* is, on the authority of Gerhardt, undoubtedly
by Leibniz himself. Without in any way impugning this
authority, I cannot help thinking it would have been more
satisfactory if I could have included herein photographic
copies of parts of this manuscript; but this is impossible
at the time of writing.

The reasons for the delay in the preparation of the
Historia are stated in the manuscript itself; and later I
shall have occasion to discuss these. In order that the
remarks made may in all cases be perfectly intelligible,
I must here give a very short account® of the history of the

3 A fair-minded consideration, like everything emanating from the pen of
De Morgan, is given of the matter in a recent edition of his Essays on the Life
and Work of Newton. The tale is told with the charm characteristic of De
Morgan, and the edition is rendered very valuable by the addition of notes,
commentary, and a large number of references supplied by the editor, P. E. B,
Jourdain (Open Court Publishing Co.). Special attention is directed to De
Morgan’s summary of the unfairness of the case in Note 3 at the foot of pages

4 See under 11 below: also cf. the original Latin as given in G. 1846, p. 4,
“per amicum conscium.”

5 The account here given is substantially that given by Gerhardt in an
article in Grunert’s Archiv der Mathematik und Physik, 1856; pp. 125-132.

This article is written in contradiction to the view taken by Weissenborn
in his Principien der hiheren Analysis, Halle, 1856. It is worthy of remark
that the partisanship of Gerhardt makes him omit in this article all mention
of the review which Leibniz wrote for the Acta Eruditorum on Newton’s work,
De Quadratura Curvarum, which really drew upon him the renewal of the
attack, byeKeill. The passage which was objected to by the English mathe-
maticians as being tantamount to a charge of plagiarism, in addition to the
insult implied, according to their thinking, in making Newton the fourth pro-
portional to Cavalieri, Fabri and Leibniz, is however given by Gerhardt in his
preface to the Historia (G. 1846, p. vii).
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quarrel up to the time of the publication of the Commer-
cium Epistolicum in 1712.

The matter was first started in the year 1699 by Fatio
de Duillier, a Swiss mathematician who had been living
in London since 1691 ; he was a correspondent of Huygens,
and from letters that Fatio sent to Huygens® it would
appear that the attack had been quietly in preparation for
some time. Whether he had Newton’s sanction or not
cannot be ascertained, yet it seems certain from the cor-
respondence that Newton had given Fatio information
with regard to his writings. Fatio then concludes that
Newton is the first discoverer and that Leibniz, as second
discoverer, has borrowed from Newton. These accusa-
tions hurt Leibniz all the more, because he had deposited
copies of his correspondence with Newton in the hands of
Wallis for publication. As Fatio was a member of the
Royal Society, Leibniz took it for granted that Fatio’s
attack was with the approval of that body; he asked there-
fore that the papers in the hands of Wallis should be
published in justice to himself. He received a reply from
Sloane, one of the secretaries of the Society, informing
him that his assumption with regard to any such partici-
pation of the Society in the attack was groundless; and
in consequence of this he took no further notice of the
matter, and the whole thing lapsed into oblivion.

In the year 1708 the attack against Leibniz was re-
newed by Keill; and the charge that Leibniz had borrowed
from Newton was most directly made. Leibniz had no-
body in England who was in a position to substantiate his
claims, for Wallis had died in 1703; so he appealed directly
to the Royal Society. This body in consequence appointed
a commission composed of members of the Society to con-
sider the papers concerned in the matter. Their report

6 Fatio’s correspondence with Huygens is to be found in Ch. Hugenii
aliorumque seculi XVII wvirorum celebrium exercitationes mathematicae et
philosophicae, ed. Uylenbroeck, 1833.
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appeared in the year 1712 under the title of Commercium
Epistolicum D, Johannis Collinsii et Aliorum de Analysi
promota, jussu Societatis Regiae in lucem editum.

Leibniz did not return to Hanover, from a tour of the
towns of Italy on genealogical research work, until two
years later; so that the date of the Historia is definitely
established to have between 1714 and 1716, the date of his
death. The dates allow us to account for the similarity
between the two reports he gives of his work, in the post-
script and the Historia, and also for any slight discrepan-
cies between them.

Let us first, however, try to find a reason why the post-
script was written, and having been written why it was
cancelled. In the Acta Eruditorum (Leipsic) for January
1691, James Bernoulli said that Leibniz had got his funda-
mental ideas from Barrow;’ but in a later number, that for
June 1691, he admitted that Leibniz was far in advance of
Barrow, though both views were alike in some ways." One
is inclined to wonder whether this admission was a result
of Leibniz’s reputed personality and charm; but as Leibniz
seems to have been stationed at Wolfenbiittel and Ber-
noulli at Basel at this time a personal interview would seem
improbable, and a more feasible suggestion would seem to
be a reasoned remonstrance by letter from Leibniz. It is
to be noticed that Bernoulli does not exactly retract his
statement that Leibniz had Barrow to thank for the fun-
damental ideas, he only states that in spite of the similari-
ties there are also dissimilarities in which Leibniz stands
far above Barrow.” I am inclined to think he is simply com-
paring the method of Leibniz with the differential triangle
method of Barrow, and that Bernoulli even has not noticed
that Barrow has propositions that are the geometrical

7 Bernoulli (Jakob), Opera, Vol. 1, p. 431.
8 Ibid., p. 453.
® Cantor, III, p. 221.
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equivalents of the differentiation of a product, quotient
and powers of the dependent variables.

It seems to me that at this time Leibniz, though he does
not forget his insinuation, has to lay all thoughts of com-
bating it aside; for Gerhardt apparently found no other
letters or other manuscripts referring to the matter prior
to that of 1703. At a certain time later, judging from the
first paragraph of the intended postscript, he would appear
to have referred to the matter again, and to have called
forth from the Bernoullis an excuse or a justification of
the statements in the Acta Eruditorum, together with somie
expression of their surprise that he should have been upset
over them. The reason may have been that it got to the
ears of Leibniz that the opinion was not confined to the
Bernoullis, for Leibniz says “....you, your brother, or
any one else.”*’

Thus much we may guess as to the occasion that promp-
ted the writing of the postscript; now let us try to find the
reason for its being cancelled. Fatio’s attack seems to
have been precipitated through pique at having been left
out by Leibniz in a list of mathematicians alone capable
of solving John Bernoulli’s problem of the line of quickest
descent.”™ ‘“He published a memoir on the problem, in

10 In the opening paragraph of the “postscript,” page 11.

11 The account which follows is taken from Williamson’s article, “Infini-
tesimal Calculus,” in the Times edition of the Encyc. Brit. The memoir re-
{gzged to) contains a passage, of which the following is a translation (G.,

, D. V)&

“Perhaps the distinguished Leibniz may wish to know how I came to be
acquainted with the calculus that I employ. I found out for myself its general
principles and most of the rules in the year 1687, about April and the months
following, and thereafter in other years; and at the time I thought that
nobody besides myself employed that kind of calculus. Nor would I have
known any the less of it, if Leibniz had not yet been born. And so let him
be lauded by other disciples, for it is certain that I cannot do so. This will be
all the more obvious, if ever the letters which have passed between the dis-
tinguished Huygens and myself come to be published. However, driven
thereto by the very evidence of things, I am bound to acknowledge that New-
ton was the first, and by many years the first, inventor of this calculus; from
whom, whether Leibniz, the second inventor, borrowed anything, I prefer that
the decision should lie, not with me, but with others who have had sight of
the paper of Newton, and other additions to this same manuscript. Nor does
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which he declared that he was obliged by the undeniable
evidence of things to acknowledge Newton, not only as
the first, but as by many years the first, inventor of the
calculus; from whom, whether Leibniz, the second inven-
tor, borrowed anything or not, he would rather those who
had seen Newton's letters and other manuscripts should
judge than himself.” The attack in itself is cowardly, in
that Fatio does not dare to make a direct assertion, only an
insinuation that is far more damaging, since it suggests
that to those who have seen the papers of Newton the
matter could not be in the slightest doubt. Leibniz replied
by an article in the Acta Eruditorum, for May 1700, in
which he cited Newton’s letters, as also the testimony
which Newton rendered to him in the Principia,'? as proof
of his claim to an independent authorship of his method.
A reply was sent by Duillier, which the editors of the Acta
Eruditorum refused to publish. This would probably be
in 1701; and I suggest that Leibniz had probably now
come to the conclusion that it would be wiser to let the
matter of Barrow drop and attend to the affair with New-
ton. When he, unwisely, started the controversy once
more by a review (containing what was taken to be an
implied sneering allusion to Newton) of the Tractatus de
Quadratura Curvarum, published by the latter with his
Optics in 1708, and thus drew upon himself the attack

the silegce of the more modest Newton, or the forward obtrusiveness of Leib-
niz....’

Truly another Roland in the field, and one in a vicious mood. What with
other claimants to the method, such as Slusius, etc.,, at least as far as the
differentiation of implicit functions of two variables is concerned, it would
almost seem that the infinitesimal calculus was not an invention, but a gradual
development of the fundamental principles of the ancient mathematicians.

12 See De Morgan’s Newton, p. 26 and pp. 148, 149, where the Scholium
is translated. The original Latin of this Scholium to Lemma II of Book II
of the Principia, the altered Scholium that appeared in the second and third
editions, with a note remarking on the change, will be found on pp. 48, 49, in
Book II of the “Jesuits’ Edition” of Newton (Editio Nova, edited by J. M. F.
}Vrigl:lt, )Glasgow, 1822; the third and best edition of the work of Le Seur and
acquier).

18 Phil. Trans., 1708; see also Cantor, III, p. 299.
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by Keill, he gladly allowed the suggestion about Barrow
to fade into oblivion, cast out by the more public, but I
think the less true, charge of plagiarism from Newton.
He also saw that he would have to prepare a careful an-
swer if he made one at all, and second thoughts suggested
that it would be as well if his postscript was made the
matter for further consideration, correction, if necessary,
and amplification, before it was sent off. It is to be noted
that the review above mentioned is written anonymously
in the third person, but it has been established that its
author was Leibniz himself.™

There does not seem to be any occasion for further
general remarks; particular points of criticism will be al-
luded to as the translation given below proceeds.

. 1*For a discussion, see Rosenberger, Isaac Newton und seine physika-
lischen Principien, Leipsic, 1895.
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LETTER TO BERNOULLI
§1L

Full translation of the intended postscript to the letter to James
Bernoulli, dated April, 1703, from Berlin.

Perhaps?® you will think it small-minded of me that I should
be irritated with you, your brother, or any one else, if you should
have perceived the opportunities for obligation to Barrow, which
it was not necessary for me, his contemporary!¢ in these discoveries,
to have obtained from him.

When I arrived in Paris in the year 1672, I was self-taught
as regards geometry,!” and indeed had little knowledge of the sub-
ject, for which I had not the patience to read through the long
series of proofs. As a youth I consulted the beginner’s Algebra
of a certain Lanzius,!8 and afterward that of Clavius;!® that of

15 The manner of the opening of this postscript would seem to indicate
that something had been mentioned with regard to the matter of his irritation
about imputed obligations to Barrow in the body of the letter; this cannot be
ascertained, for Gerhardt does not quote the letter in connection.

16 [eibniz can hardly with justice call Barrow his contemporary; Barrow
anticipated him by half a dozen years at least. For Barrow had published his
Lectiones Geometricae in 1670, while the very earliest date at which Leibniz
could have obtained his results is the end of 1672; and there is reason to
believe, as I have shown in my edition of the Lectiones, that Barrow was in
possession of his method many years before publication, and had most prob-
ably communicated his secret to Newton in 1664,

17t is to be noted that the sole topic of this postscript is geometry, of
which Leibniz candidly states that he knew practically nothing in 1672,

18 Most probably the Institutiones arithmeticae of Johann Lantz, pub-
lished at Munich in 1616; Cantor, III, p. 40.

19 Possibly the Geometria practica of Christopher Clavius, better known
as an editor of Euclid; he was the professor at Rome under whom Gregory
St. Vincent studied. There are repeated references to Clavius in Cantor, 11
and III, Index, q. 2.

It is worth remarking that neither Lanzius nor Clavius is mentioned in
the Historia.
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Descartes seemed to be more intricate.?® Nevertheless, it seemed
to me, I do not know by what rash confidence in my own ability,
that I might become the equal of these if I so desired. I also had
the audacity to look through even more profound works, such as
the geometry of Cavalieri,l and the more pleasant elements of
curves of Leotaud,?? which I happened to come across in Nurem-
berg, and other things of the kind ; from which it is clear that I was
now ready to get along without help,?® for I read them almost as
one reads tales of romance.

Meanwhile I was fashioning for myself a kind of geometrical
calculus by means of little squares and cubes to express undeter-
mined numbers, being unaware that Descartes and Vieta had worked
out the whole matter in a superior manner.2* In this, I may almost
call it, superb ignorance of mathematics, I was then studying
history and law; for I had decided to devote myself to the latter.
From mathematics I as it were only sipped those things that were
the more pleasant, being especially fond of investigating and in-
venting machines, for it was at this time that my arithmetical

20 Tt has been stated that, according to Descartes’s own words, the in-
tricacies of his Géoméirie were intentional; it certainly has the character of a
challenge to his contemporaries. There is no preparation, such as marks a
book of the present day on coordinate geometry; Descartes starts straight-
way on the solution of a problem given up as insoluble by the ancients. No
woz:jdc;r that young Leibniz found some difficulty with his first attempt to
read it.

21In 1635, Cavalieri published his Geometria Indivisibilibus, and thus
laid the foundation stone of the integral calculus. It would seem that Rober-
val was really the first inventor, or at least an independent inventor of the
method; but he lost credit for it because he did not publish it, preferring to
keep it to himself for his own use. Other examples of this habit are com-
mon among the mathematicians of the time.

.~ 22The book referred to was published in 1654. It appeared as the second
volume of a work whose first volume was a critique and refutation of the quad-
rature of the circle published by Gregory St. Vincent; this second volume
was not the work of Leotaud, as the second part of the title showed: “necnon
CURVILINEORUM CONTEMPLATIO, olim inita ab ARTUSIO DE
LIONNE, Vapincensi Episc.” It therefore appears to have been an _edited
reprint of the work of De Lionne, the bishop of Gap (ancient name, Vapin-
cum). Since part of this treatise is devoted to the “lunules of Hippocrates”
(see Cantor, I, pp. 192-194), it may have had some influence with Leibniz in
giving him the first idea for his evaluation of =.

28 Literally, “I was about to swim without corks.”

24 Leibniz here would appear to assert that he had considered some form
of rectangular coordinate geometry, the association with the name of Descartes
being fairly conclusive. Vieta's In Artem Analyticam Isagoge explained how
algebra could be applied to the solution of geometrical problems (Rouse Ball) ;
for further information see Cantor.
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machine?’ was devised. At this time also it happened that Huygens,
who I fully believe saw more in me than there really was, with
great courtesy brought me a copy recently published of his book
on the pendulum.26 This was for me the beginning or occasion

25 This seems to have been an improvement on the adding machine of
Pascal, adapting it to multiplication, division and extraction of roots. Pascal’s
machine was produced in 1642, and Leibniz’s in 1671.

286 Huygens’s Horologium Oscillatorium was published in 1673; we are
thus provided with an exact date for the occurrence of the conversation that set
Leibniz on to read Pascal and St. Vincent. This was after his first visit to
London, from which he returned in March, “having utilized his stay in Lon-
don to purchase a copy of Barrow’s Lectiones, which Oldenburg had brought
to his notice” (Zeuthen, Geschichte der Mathematik im XVI. und XVII.
Jahrhundert; German edition by Mayer, p. 66). Leibniz himself mentions in
a letter to Oldenburg, dated April 1673, that he has done so. Gerhardt
(G. 1855, p. 48) states that he has seen, in the Royal Library of Hanover the
copy of Barrow’s Lectiones Geometricae, so that it must have been the com-
]t))inedh edition of the Optics and the Geometry, published in 1670, that Leibniz

ought.

Thus, before he is advised to study Pascal by Huygens, he has already
in his possession a copy of Barrow. It is idle that any one should suppose that
Leibniz bought this book onthe recommendation of a friend in order merely to
possess it; Leibniz bought books, or borrowed them, for the sole purpose of
study. Unless we are to look upon this account of his reading as the result of
lack of memory extending back for thirty years, there is only one conclusion
to come to, barring of course the obviously brutal one that Leibniz lied; and
this conclusion is that at the first reading the only thing that Leibniz could
follow in Barrow was the part that he marked Novi dudum (“Knew this
before”), and this was the appendix to Lecture XI, which dealt with the
Cyclometria of Huygens, as Barrow calls the book entitled De Circuli Mag-
nitudine Inventa. The absence of any more such remarks is almost proof
positive that Leibniz knew none of the rest before. Hence he must have read
the Barrow before he had filled those “hundreds of sheets” that he speaks of
later, with geometrical theorems that he has discovered; for at the end of the
postscript we are considering he states that “in Barrow, when his Lectures
appeared, 1 found the greater part of my theorems anticipated.”” There is
something very wrong somewhere; for this would appear to state that it was
the second edition of Barrow, published in 1874, that Leibniz had bought; it
is impossible, as the words of Leibniz stand, that they should refer to the 1670
edition, for it had been published before Leibniz arrived in Paris. It is how-
ever certain from Leibniz’s letter to Oldenburg that it could not be the 1674
edition, for the date of the letter is 1673. In this letter Leibniz merely makes
a remark on the optical portion; but it could not have been the separate edition
of the Optics, published in 1669, for Gerhardt states that the copy he has seen
contains the Geometry with notes in the margin.

To those who have ever waded through the combined edition of Barrow’s
Optics and Geometry, it may be that rather a startling suggestion will occur.
It was sheer ill-luck that drove Leibniz, after studying the Optics (perhaps on
the journey back from London, for we know that this was a habit of his), to
get tired of the five preliminary geometrical lectures in all their dryness, and
on reaching home, just to skim over the really important chapters, missing all
the important points, and just the name of Huygens catching his eye. This
is a new suggestion as far as I am aware; everybody seems to decide between
one of two things, either that Leibniz never read the book until the date he
himself gives, “Anno Domini 1675 as far as I remember,” or else that he
purposely lied. I will return to this point later; meanwhile see Cantor, III,
pp. 161-163, and consult the references given in the footnotes to these pages;
the pros and cons of the conflict between probability and Leibniz’s word are
there summarized.



14 THE EARLY MANUSCRIPTS OF LEIBNIZ.

of a more careful study of geometry. While we conversed, he
perceived that I had not a correct notion of the center of gravity,
and so he briefly described it to me; at the same time he added the
information that Dettonville (i. e., Pascal) had worked such things
out uncommonly well.??  Now I, who always had the peculiarity that
I was the most teachable of mortals, often cast aside innumerable
meditations of mine that were not brought to maturity, when as
it were they were swallowed up in the light shed upon them by a few
words from some great man, immediately to grasp with avidity
the teachings of a mathematician of the highest class; for I quickly
saw how great was Huygens. In addition there was the stimulus
of shame, in that I appeared to be ignorant with regard to such
matters. So I sought a Dettonville from Buotius, a Gregory St.
Vincent?® from the Royal Library, and started to study geometry
in earnest. Without delay I examined with delight the “ductus” of
St. Vincent, and the “ungulae” begun by St. Vincent and developed
by Pascal,®® and those sums and sums of sums and solids formed

27Pascal’s chief work on centers of gravity is in connection with the
cycloid, and solids of revolution formed from it. His method was founded
on the indivisibles of Cavalieri. His work was issued as a challenge to con-
temporaries under the assumed name of Amos Dettonville, and under the same
name he published his own solutions, after solutions had been given by Huy-
gens, Wallis, Wren and others.

28 The method of ductus plani in planum, the leading or multiplication of
a plane into a plane, employed by Gregory St. Vincent in the seventh book
of his Opus Geometricum (1649) is practically
on the same fundamental principle as the present 1Y
method of finding the volume of a solid by inte- -
gration. A simple explanation may be given by
means of the figure of a quarter of a cone.

Let AOBC be the quarter of a circular cone
(Fig. A), of which OA is the axis, and ABC the
base, so that all sections, such as abc, are parallel
to ABC and perpendicular to the plane AOC, Let
ad be the height of a rectangle equal in area to
the quadrant abc, so that ad is the average height
of the variable plane abc; then the volume of the
figure is found by multiplying the height of the
variable plane as it moves from O to the position
ABC by the corresponding breadth of the plane Fig. A.

OAQG, i. e, by bc, and adding the results.

As we shall see later, Leibniz does not fully appreciate the real meaning
of the method; on the other hand Wallis uses the method with good effect in
his Arithmetica Infinitorum, and states that he has come to it independently.
In the above case he would have stated that the product in each case was pro-
portional to the square on ac, drawn an ordinate ae at right angles to Oa, so
that ge represented the product, and so formed the parabola OeEAcO, of
w}rlhich the area is known to him., This area is proportional to the volume of
the cone.

29 Ungulae denote hoof-shaped solids, such as the frusta of cylinders or
cones cut off by planes that are not parallel to one another.

E
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and resolved in various ways; for they afforded me more pleasure
than trouble.

I was working upon these when I happened to come across
a proof of Dettonville’s that was of a supremely easy nature, by
which he proved the mensuration of the sphere as given by Archi-
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Fig. 1. Fig. 2.

medes,?® and showed from the similarity of the triangles EDC and
CBK that CK into DE = BC into EC; and hence, by taking BF = CK,

30 Figure 1 (see above) is of extreme interest. First of all it is not Bar-
row’s “differential triangle,” which is that of Fig. B below; this of course is
only what those who believe Leibniz’s statement that he received no help
from Barrow, would expect. By the way, the figure given by Cantor as
Barrow’s is not quite accurate. (Cantor, III, p. 135.)
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Fig. B (BARrROW). Fig. C (PascaL).

But neither is it the figure of Pascal, which is that of Fig. C. Of course,
I am assuming that Gerhardt has given a correct copy of the figure given by
Leibniz in his manuscript; although that which I have given of it, a faithful
copy of Gerhardt’s, shows that his curve was not a circle. I also assume that
Cantor is correct in the figure that he gives from Pascal; although Cantor says
that the figure occurs in a tract on the sines of a quadrant, and not, as Leibniz
states, in a problem on the measurement of the sphere. Indeed it seems to me
that the figure is more likely to be connected with the area of the zone of a
sphere and the proof that this is equal to the corresponding belt on the circum-
scribing cylinder than anything else. I am bound to assume these things, for
I have not had the opportunity of seeing either of the figures in the original
for myself. It is strange, in this connection, that Gerhardt in one place (G.
1848, p. 15) gives 1674 as the date of the publication of Barrow, and in another
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that the rectangle AF is equal to-the moment® of the curve AEC
about the axis AB. [Fig. 1.]

place (G. 1855, p. 45) seven years later, he makes it 1672, and neither of them
is correct as the date of the copy that Leibniz could possibly have purchased,
namely 1670. This is culpable negligence in the case of a date upon which an
argument has to be founded, for one can hardly suspect Gerhardt of deliberate
intent to confuse. Nevertheless, like De Morgan, I should have felt more
happy if I could have given facsimiles of Barrow’s book, and Leibniz’s manu-
script and figure.

Lastly, there is in Barrow (what neither Gerhardt, Cantor, nor any one
else, with the possible exception of Weissenborn, seems to have noticed) chap-
ter and verse for Leibniz’s “characteristic triangle.” Fig. D is the diagram
that Barrow gives to illustrate the first theorem of Lecture XI. This is of
course, as is usual with Barrow, a complicated diagram drawn to do duty
for a whole set of allied theorems.
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Fig. D. Fig. E.

In the proof of the first of these theorems occur these words:
“Then the triangle HLG is similar to the triangle PDH (for, on account
of the infinite section, the small arc HG can be considered as a straight line).
Hence, HL : LG=PD : DH, or HL.DH =LG. PD,
i. e, HL.HO=DC.Dy.

By similar reasoning, it may be shown that, since the triangle GMF is
similar to the triangle PCG,...."

If now the lines in italics are compared with that part of the figure to
which they refer, which has been abstracted in Fig. E, the likeness to Leib-
niz’s figure wants some explaining away, if we consider that Leibniz had the
opportunity for seeing this diagram. Such evidence as that would be enough
to hang a man, even in an English criminal court. (Further, see Note 46.)

To sum up, I am convinced that Leibniz was indebted to both of Barrow’s
diagrams, and also to that of Pascal (for I will call attention to the fact that
he uses all three, as I come to them) and I think that after the lapse of thirty
years he really could not tell from whom he got his figure. In such a case it
would be only natural, if he knew that it was from one of two sources and he
was accused of plagiarizing from the one, that he should assert that it was
from the other. Hence, by repetition, he would come to believe it. But even
this does not explain his letter to d'Hospital, where he says that he has not
obtained any assistance from his methods; unless again we remember that
this letter is dated 1694, twenty years after the event.

81 Great importance, in my opinion hardly merited, is attached to the use
by Leibniz of the phrase momento ex axe in this place, and in his manuscripts
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The novelty of the reasoning struck me forcibly, for I had not
noticed it in the works of Cavalieri®2 But nothing astonished me
so much as the fact that Pascal seemed to have had his eyes obscured
by some evil fate; for I saw at a glance that the theorem was a most
general one for any kind of curve whatever, Thus, let the perpen-
diculars not all meet in a point, but let each perpendicular from the

1llg7dser the heading Awnalysis Tetragonistica ex Centrobarycis, dated October,

The Latin word momentum, a contraction of movimentum, has a primary
meaning of movement or alteration, and a secondary meaning of a cause pro-
ducing such movement, The present use of the term to denote the tendency
of a force to produce rotation is an example of the use of the word to denote
an effect; from the second idea, we have first of all its interpretation as some-
thing just sufficient to cause the alteration in the swing of a balance (where
the primary idea still obtains), hence something very small, and especially a
very small element of time. .

Thus we see that Leibniz uses the term in its primary sense, for he employs
it in connection with a method ex Centrobarycis, and in its mechanical sense,
and it is thus fairly justifiable to assume that he got the term from Huygens;
in just this sense we now speak of the moment of inertia.

Newton’s use of the term is given in Lemma II of Book II of the Prin-
cipia, in the following way.

“I shall here consider such quantities as undetermined or variable, as it
were increasing or decreasing by a continual motion or flow (Auxus); and
their instantaneous (momentanea) increments or decrements I shall denote
(intelligo = understand) by the name “moments”; so that increments stand
for moments that are added or positive (affirmativis), and decrements for those
that are subtracted or negative.”

This has nothing whatever to do with what Leibniz means by a moment,
and it seem ridiculous to bring forward the use of this word as evidence
that Leibniz had seen Newton’s work, or even heard of it through Tschirn-
haus, before the year 1675.

The fact that in another place, where I will refer to it again, he uses the
phrase “instantaneous increment” is quite another matter.

The use of the word moment in this mechanical sense is here perfectly
natural. See Cantor, III, p. 165; also Cantor, II, p. 569, where the idea is
referred back at least to Benedetti (1530-1590) ; but the idea is fundamental in
the theorems due to Pappus concerning the connection between the path of the
center of gravity of an area and the surfaces and volumes of rings generated
by the area, of which the proofs were given by Cavalieri. When, however,
and by whom, the word moment was itself first used in this connection, I
have been unable to find the slightest trace. (See p. 195.)

32 With due regard to the statement that Leibniz “had looked through
Cavalieri” before he went to Paris, it is not remarkable that he did not notice
very much at all in Cavalieri. Cavalieri’s Geometria Indivisibilibus is not a
book to be “looked through.” It is a work for weeks of study. I cannot say
whether the idea involved in Leibniz’s characteristic triangle is used by
Cavalieri as such; but I do not see how else he could have given proofs (as
stated by Williamson in his article on “Infinitesimal Calculus” in the Times
edition of the Encyc. Brit.) of Pappus’s theorem for the area of a ring; and
I should think that it is morally certain that Cavalieri is the source from which
Wallis obtained his ideas for the rectification of the arc of the spiral. I had
occasion to refer to a copy in the Cambridge University Library, and what I
saw of it in the short time at my disposal determined me to make a trans-
lation of it, with a commentary, as soon as I had enough time at my disposal.
“As one reads tales of romance”!
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curve be transferred to the position of an ordinate to the axis, as
PC or (P)(C) to the position BF or (B)(F); then it is clear
that the zone FB(B) (F)F will be equal to the moment of the curve
C(C) about the axis.3® [Fig. 2.]

Straightway I went to Huygens, whom I had not seen again
in the meantime. I told him that I had followed out his instructions
and that I was now able to do something that Pascal had failed to do.
Then I showed him the general theorem for moments of curves.
He was struck with wonder and said, “Now, that is the very theo-
rem upon which depend my constructions for finding the area’* of
the surfaces of parabolic, elliptic and hyperbolic conoids; and how
these were discovered, neither Roberval nor Bullialdus3® were ever
able to understand.” Thus praising my progress, he asked me
whether I could not now find the properties of such curves as F(F).
When I told him that I had made no investigation in this direction
he told me to read the works of Descartes and Slusius,36 who
showed how to form equations for loci; for he said that this idea
was a most useful one. Thereupon I examined the Geometry of
Descartes and made a close study of Slusius, thus entering the

33 The moment is proportional to the area of the surface formed by the
rotation of the curve C(C) about AP. Barrow does not at first use the
method to find the areas of surfaces of revolution; he prefers to straighten
out the curve C(C), and erect the ordinates BC, (B) (C) perpendicular to the
curve thus straightened; i. e, he works with the product BC.C(C) as it
stands. But, after giving the determination of the surface of a right circular
cone as an example of the method, and as a means of combating the objec-
tions of Tacquet to the method of indivisibles, he goes on to say: “Evidently
in the same manner we can investigate most easily the surfaces of spheres and
portions of spheres (nay, provided all necessary things are given or known,
any other surfaces that are produced in this way). But I propose to keep, to
a great extent, to more general methods” (end of Lecture II). Thus we find
that Barrow does not give any further examples of the determination of the
areas of surfaces of revolution until Lecture XII. And why? Because he is
not writing a work on mensuration, but a calculus. The reference to the
method of indivisibles however shows that in Barrow’s opinion, if Cavalieri
had not used his method for the determination of the area of the surface of a
sphere, then he ought to have done so.

3¢ 1t is difficult to see also how Huygens could have performed his con-
structl?lns unless he had used the method that Leibniz claims to have dis-
covered.

85 It is strange that Roberval, as an independent discoverer of the method
of indivisibles, did not perceive the method of the constructions of Huygens.
Bullialdus is Ismael Bouilleau (Martin’s Biog. Philos.), or Boulliau (Poggen-
dorff), author of works on conics, arithmetic of infinites, astronomy, etc. Cf.
fSetclll \{\gggd: In Ismaelis Bullialdi astron. philos. fundamento inquisitiones. Ox-
ord, X

36 This conversation probably took place late in 1673; see a note on the
alteration of the date of a manuscript dated November 11, 1673, where the 3
was originally a 5 (see p. 93). :



LETTER TO BERNOULLI. 19

house of geometry truly as it were by the back door. Urged on
by the success I met with, and by the great number of results that
I obtained, I filled some hundreds of sheets with them in that year.
These I divided into two classes of assignables and inassignables.
Among assignables I placed everything I obtained by the methods
previously used by Cavalieri, Guldinus, Toricelli, Gregory St. Vin-
cent and Pascal, such as sums, sums of sums, transpositions, “duc-
tus,” cylinders truncated by a plane, and lastly by the method of the
center of gravity; and among inassignables I placed all that I
obtained by the use of the triangle which I at that time called “the
characteristic triangle,”%” and things of the same class, of which
Huygens and Wallis seemed to me to have been the originators.

A little later there fell into my hands the Universal Geometry
of James Gregory of Scotland,?® in which I saw the same idea ex-

The method of Slusius (de Sluze, or Sluse) is as follows:
Suppose that the equation of the given curve is

23 —2x2y 4 ba2 —b2x + by2 —y3 =0.

Slusius takes all the terms containing y, multiplies each by the correspond-
ing index of y; then similarly takes all the terms containing #, multiplies each by
the corresponding index of #, and divides each term of the result by x'; the quo-
tient of the former by the last expression gives the value of the subtangent. This
is practically the content of Newton’s method of analysis per aequationes, and
Slusius sent an account of it to the Royal Society in January, 1673. It was
printed in the Phil. Trans., as No. 90. This is given by Gerhardt (G. 1848, p.
15) as an example of the method of Slusius. It is rather peculiar that Ger-
hardt does not mention that this is the example given by Newton in the oft-
quoted letter of December 10, 1672, and represents what Newton “guesses
the method to be.” As it stands in G. 1848, it would appear to be a quotation
from the work of Slusius himself. There is evidence that Leibniz had seen
the explanation given in the Phil. Trons., or had been in communication with
Slusius; this will be referred to later, but it may be said here that this fact
r;nakes Leibniz somewhat independent of any necessity of having seen Newton’s
etter.

37 Some point is made of the question why, if Leibniz had seen the “dif-
ferential triangle” of Barrow, he should have called it by a different name. If
there were any point in it at all, it would go to prove that Barrow’s calculus
was published by Barrow as a differential calculus. But there is no point,
for Barrow never uses the term! It is a product of later growth, by whom
first applied I know not. Leibniz, thus free to follow his logical plan of de-
nominating everything, uses a term borrowed from his other work. He thus
defines a character or characteristic. “Characteristics are certain things by
means of which the mutual relations of other things can be expressed, the lat-
ter being dealt with more easily than are the former.” See Cantor, III, p. 33f.

38 Gregory’s Geometriae Pars Universalis was published at Padua in 1668.
Leibniz had either this book, or the Barrow in which one of Gregory’s theo-
rems is quoted, close at hand in his work. For he gives it as an example of
the power of his calculus, referring to a diagram which is not drawn. This
diagram I was unable to draw from the meager description of it given by
Leibniz, until I looked up Barrow's figure, in default of being able to obtain
a copy of Gregory’s work; thereupon the figure was drawn immediately.
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ploited (although obscured by the proofs, which he gave according
to the manner of the ancients), and as in Barrow, when his Lec-
tures appeared, in which latter I found the greater part of my theo-
rems anticipated.3®

However I did not mind this very much, since I saw that these
things were perfectly easy to the veriest beginner who had been
trained to use them,* and because I perceived that there remained
much higher matters, which however required a new kind of cal-
culus. Thus I did not think that my Arithmetical Quadrature,
although it was received by the French and English with great
commendation, was worth being published, as I was loath to waste
time over such trifles while the whole ocean was open to me. How
matters then proceeded you already know, and as my letters, which
the English themselves have published, prove.#!

39 Here indeed it must be admitted that Leibniz is —suffering from a lapse
of memory. As has been said before, Barrow’s lectures appeared in 1670 and
were in the possession of Leibniz before ever he dreamed of his theorems.
But what can one expect when admittedly this account (from which the
Historia was in all probability written up) is purely from memory, aided by
the few manuscripts that he had kept. Gerhardt does not say that he has
found, nor does he publish, any manuscripts that could possibly give the order
in which the text-books that Leibniz procured were read. Which of us, at
the age of 57, could say in what order we had read books at the age of 27;
or, if by then we had worked out a theory, could with accuracy describe the
steps by which we climbed, or from a mass of muddle and inaccuracies, say to
whom we were indebted for the first elementary ideas that we had improved
beyond all recognition? 1 doubt whether any of us would recognize our own
work under such circumstances.

40 Again Leibniz makes a bad mistake in affecting to despise the work of
his rivals—for that is what the words, “these things were perfectly easy to
the veriest beginner who had been trained to use them,” makes us believe. It
is also bad taste, for, besides Barrow, Huygens also remained true to the
method of geometry till his death. The sentence which follows savors of
conceit; as a matter of fact it was left to others, such as the Bernoullis,
to make the best use of the method of Leibniz. The great thing we have to
thank Leibniz for is the notation; it is a mistake to call this the invention
of a notation for the infinitesimal calculus. As we shall see, Leibniz invented
this notation for finite differences, and only applied it to the case in which the
differences were infinitely small. Barrow’s method, of ¢ and ¢, also survives to
the present day, under the disguise of % and k, in the method by which the
elements of the calculus are taught in nine cases out of ten. For higher dif-
ferential coefficients the suffix notation is preferable, and later on the operator
D is the method par excellence.

41 Here Leibniz seems to be unable to keep from harking back tothe
charge made by Fatio, suggesting that by the publication of his letters by
Wallis this charge has been proved to be absolutely groundless.
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NOTE.

As T have pointed out in the Introduction, it is impor-
tant, when comparing the foregoing “postscript” with the
more detailed “Historia” which follows, the different cir-
cumstances of the compositions. Otherwise there is a dan-
ger that certain slight discrepancies between the two ac-
counts may assume an importance that is not justified.

These discrepancies, however, have a certain amount of
importance; especially in their relation to the indebtedness
of Leibniz to Barrow rather than to Newton. The different
diagrams, given by Leibniz in connection with his several
explanations of the manner in which he obtained his “mo-
ment theorem,” afford perhaps the greatest food for
thought; and this, more especially perhaps in relation to
the indebtedness of Leibniz to Pascal, which, in opposition
to Gerhardt, I have tried to show was hardly worth men-
tioning. This point is discussed in notes on pp. 15-18, and
further in Chap. VII. A second point is that mention is
made of Barrow’s Lectiones in the “postscript”; whereas
the name of Barrow is omitted in the “Historia” from the list
of those noteworthy men who dealt with indivisibles, given
on p. 24. This is connected with the date of purchase by
Leibniz of his copy of Barrow’s book, and the incorrect date
of publication given by Gerhardt.

Lastly, in the postscript there is only a passing mention
made of Leibniz’s Arithmetical Quadrature; whereas in the
“Historia” (p. 42) it is given in great detail, showing the
importance that Leibniz assigned to his method of trans-
mutation. In a note on p. 172, I show that there was no
necessity for Leibniz to have seen Newton’s work on Series;
for a straightforward application of Mercator’s method
of summation to a result given by Barrow yields the arc
in terms of the tangent in the form usually known as Greg-
ory’s Series. We now proceed to consider the “Historia.”
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“HISTORIA ET ORIGO CALCULI DIFFEREN-
TIALIS.”

§2
HISTORY AND ORIGIN OF THE DIFFERENTIAL CALCULUS.

It is an extremely useful thing to have knowledge of the true
origins of memorable discoveries, especially those that have been
found not by accident but by dint of meditation. It is not so much
that thereby history may attribute to each man his own discoveries
and that others should be encouraged to earn like commendation,
as that the art of making discoveries should be extended by con-
sidering noteworthy examples of it.

Among the most renowned discoveries of the times must be
considered that of a new kind of mathematical analysis, known by
the name of the differential calculus; and of this, even if the essen-
tials are at the present time considered to be sufficiently demon-
strated, nevertheless the origin and the method of the discovery
are not yet known to the world at large. Its author invented it
nearly forty years ago, and nine years later (nearly thirty years
ago) published it in a concise form; and from that time it has not
only been frequently made known in memoirs,* but also has been
a method of general employment; while many splendid discoveries
have been made by its assistance, such as have been included in
the Acta Eruditorum, Leipsic, and also such as have been pub-
lished in the memoirs of the Royal Academy of Sciences; so that
it would seem that a new aspect has been given to mathematical
knowledge arising out of its discovery.

Now there never existed any uncertainty as to the name of
the true inventor, until recently, in 1712, certain upstarts, either

421t is possible that this may mean “has received high commendation”;
for elogiis may be the equivalent of eulogy, in which case celebratus est must
be translated as “has been renowned.”
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in ignorance of the literature of the times gone by, or through
envy, or with some slight hope of gaining notoriety by the discussion,
or lastly from obsequious flattery, have set up a rival to him; and
by their praise of this rival, the author has suffered no small dis-
paragement in the matter, for the former has been credited with
having known far more than is to be found in the subject under
discussion. Moreover, in this they acted with considerable shrewd-
ness, in that they put off starting the dispute until those who knew
the circumstances, Huygens, Wallis, Tschirnhaus, and others, on
whose testimony they could have been refuted, were all dead.# In-
deed this is one good reason why contemporary prescripts should
be introduced as a matter of law; for without any fault or deceit
on the part of the responsible party, attacks may be deferred until
the evidence with which he might be able to safeguard himself
against his opponent had ceased to exist. Moreover, they have
changed the whole point of the issue, for in their screed, in which
under the title of Commercium Epistolicum D. Johannis Collinsii
(1712) they have set forth their opinion in such a manner as to
give a dubious credit to Leibniz, they have said very little about
the calculus; instead, every other page is made up of what they
call infinite series. Such things were first given as discoveries by
Nicolaus Mercator#* of Holstein, who obtained them by the process

43 This is untrue. As has been said, the attack was first made publicly in
1699; at this time, although Huygens had indeed been dead for four years,
Tschirnhaus was still alive, and Wallis was appealed to by Leibniz. It is
strange that Leibniz did not also appeal to Tschirnhaus, through whom it is
suggested by Weissenborn that Leibniz may have had information of Newton’s
discoveries. Perhaps this is the reason why he did not do so, since Tschirn-
haus might not have turned out to be a suitable witness for the defense. Leib-
niz must have had this attack by Fatio in his mind, for he could hardly have
referred to Keill as a novus homo, while we know that he did not think much
of Fatio as a mathematician. To saythat there never existed any uncertainty
as to the name of the true inventor until 1712 is therefore sheer nonsense;
for if by that he means to dismiss with contempt the attack of Fatio, whom can
he mean by the phrase novus homo? The sneering allusion to “the hope of
gaining notoriety by the discussion” can hardly allude to any one but Fatio.
Finally if Fatio is dismissed as contemptible, the second attack by Keill was
made in 1708. If it was early in the year, Tschirnhaus was even then alive,
though Wallis was dead.

44 Gerhardt says in a note (G. 1846, p. 22) that his real name was prob-
ably Kramer; for what reason I am unable to gather. Cantor says distinctly
that his name was Kaufmann, and this is the usually accepted name of the
man who was one of the first members of the Royal Society and contributed
to its Trensactions. It seems to me that Gerhardt is guessing; the German
word Kramer means a small shopkeeper, while Kaufmann means a merchant.
To Mercator is due the logarithmic series obtained by dividing unity by
(14 2) and integrating the resulting series term by term; the connection
with the logarithm of (1 x) is through the area of the rectangular hyper-
bola y(1+42) =0. See Reiff, Geschichte der unendlichen Reihen.
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of division, and Newton gave the more general form by extraction
of roots.#s This is certainly a useful discovery, for by it arith-
metical approximations are reduced to an analytical reckoning; but
it has nothing at all to do with the differential calculus. Moreover,
even in this they make use of fallacious reasoning; for whenever
this rival works out a quadrature by the addition of the parts by
which a figure is gradually increased,* at once they hail it as the
use of the differential calculus (as for instance on page 15 of the
Commercium). By the selfsame argument, Kepler (in his Stereo-
metria Doliorum),* Cavalieri, Fermat, Huygens, and Wallis used

45 Newton obtained the general form of the binomial expansion after the
method of Wallis, i. e, by interpolation. See Reiff.

46 We now see what was Leibniz’s point; the differential calculus was
not the employment of an infinitesimal and a summation of such quantities;
it was the use of the idea of these infinitesimals being differences, and the
employment of the notation invented by himself, the rules that governed the
notation, and the fact that differentiation was the inverse of a summation;
and perhaps the greatest point of all was that the work had not to be referred
to a diagram. This is on an inestimably higher plane than the mere differen-
tiation of an algebraic expression whose terms are simple powers and roots
of the independent variable. i

47T Why is Barrow omitted from this list? As I have suggested in the
case of Barrow’s omission of all mention of Fermat, was Leibniz afraid to
awake afresh the sleeping suggestion as to his indebtedness to Barrow? I
have suggested that Leibniz read his Barrow on his journey back from London,
and perhaps, tiring at having read the Optics first and then the preliminary
five lectures, just glanced at the remainder and missed the main important
theorems. I also make another suggestion, namely, that perhaps, or probably,
in his then ignorance of geometry he did not understand Barrow. If this is
the case it would have been gall and wormwood for Leibniz to have ever
owned to it. Then let us suppose that in 1674 with a fairly competent know-
ledge of higher geometry he reads Barrow again, skipping the Optics of which
he had already formed a good opinion, and the wearisome preliminary lectures
of which he had already seen more than enough. He notes the theorems as
those he has himself already obtained, and the few that are strange to him
he translates into his own symbolism. I suggest that this is a feasible sup-
position, which would account for the marks that Gerhardt states are made in
the margin. It would account for the words “in which latter I found the
greater part of my theorems anticipated” (this occasion in future times rank-
ing as the first time that he had really read Barrow, and lapse of memory at
the end of thirty years making him forget the date of purchase, possibly con-
fusing his two journeys to London) ; it would account for his using Barrow’s
differential triangle instead of his own “characteristic triangle.” As Barrow
tells his readers in his preface that “what these lectures bring forth, or to
what they may lead you may easily learn from the beginnings of each,” let us
suppose that Leibniz took his advice. What do we find? The first four theo-
rems of Lecture VIII give the geometrical equivalent of the differentiation
of a power of a dependent variable; the first five of Lecture IX lead to a
proof that, expressed in the differential notation,

(ds/dx)? =14 (dy/dx)?;

the appendix to this lecture contains the differential triangle, and five exam-
ples on the a and ¢ method, fully worked out; the first theorem in Lecture XI
has a diagram such that, when that part of it is dissected out (and Barrow’s



~HISTORIA ET ORIGO. 25

the differential calculus; and indeed, of those who dealt with “
divisibles” or the “infinitely small,” who did not use it? But Huy-
gens, who as a matter of fact had some knowledge of the method
of fluxions as far as they are known and used, had the fairness
to acknowledge that a new light was shed upon geometry by this
calculus, and that knowledge of things beyond the province of that
science was wonderfully advanced by its use.

Now it certainly never entered the mind of any one else before
Leibniz to institute the notation peculiar to the new calculus by
which the imagination is freed from a perpetual reference to dia-

diagrams want this in most cases) which applies to a particular paragraph in
the proof of the theorem, this portion of the figure is a mirror image of the
figure drawn by Leibniz when describing the characteristic triangle (turn
back to note 30). I shall have occasion to refer to this diagram again. The
appendix to this lecture opens with the reference to the work of Huygens;
and the second theorem of Lecture XII is the strangest coincidence of all.
This theorem in Barrow’s words is:

“Hence, if the curve AMB is rotated about the axis AD, the ratio of the
surface produced to the space ADLK is that of the circumference of a circle
Lo its (yi’iameter ; whence, if the space ADLK is known, the said surface is

Nowi.

The diagram given by Barrow is as usual very complicated, serving for
a group of nine propositions. Fig. F is that part of the figure which refers
to the theorem given above, dissected out from Barrow’s figure. Now remem-
ber that Leibniz always as far as possible kept his axis clear on the left-hand
side of his diagram, while Barrow put his datum figure on the left of his
axis, and his constructed figures on the right; then you have Leibniz’s dia-
gram and the proof is by the similarity of the triangles MNR, PMF, where

A K
R F Z
B ) \\.
\ °
Fig. F.

FZ =PM; and the theorem itself is only another way of enunciating the
theorem that Leibniz states he generalized from Pascal’s particular case!
Lastly, the next theorem starts with the words: “Hence the surfaces of the
sphere, both the spheroids and the conoids receive measurement.”” What a
coincidence !

As this note is getting rather long, I have given the full proof of the first
two theorems of Barrow’s Lecture XII as a supplement, at the end of this
section.

The sixth theorem of this lecture is the theorem of Gregory which Leibniz
also gives later; I will speak of this when I come to it. As also, when we
discuss Leibniz’s proof of the rules for a product, etc., I will point out where
they are to be found in Barrow ready to his hand.

Yet if all this were so, he could still say with perfect truth that, in the
matter of the invention of the differential calculus (as he conceived the matter
to consist, that is, the differential and integral notations and the method of
analysis), he derived no assistance from Barrow. In fact, once he had ab-
sorbed his fundamental ideas, Barrow would be less of a help than a hindrance.
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grams, as was made by Vieta and Descartes in their ordinary or
Apollonian geometry ; moreover, the more advanced parts pertaining
to Archimedean geometry, and to lines which were called “mechan-
ical”#® by Descartes, were excluded by the latter in his calculus.
But now by the calculus of Leibniz the whole of geometry is sub-
jected to analytical computation, and those transcendent lines that
Descartes called mechanical are also reduced to equations chosen
to suit them, by considering the differences dx, ddx, etc., and the
sums that are the inverses of these differences, as functions of the
#’s; and this, by merely introducing the calculus, whereas before
this no other functions were admissible but x, xx, 2%, V/#, etc., that
is to say, powers and roots.#? Hence it is easy to see that those who
expressed these differences by 0, as did Fermat, Descartes, and even
that rival, in his Principia published in 16—50 were by that very
fact an extremely long way off from the differential calculus; for
in this way neither gradation of the differences nor the differential
functions of the several quantities can possibly be made out.
There does not exist anywhere the slightest trace of these
methods having been practised by any one before Leibniz.5! With
48 Apollonian geometry comprised the conic sections or curves of the
second degree according to Cartesian geometry; curves of a higher degrec

and of a transcendent nature, like the spiral of Archimedes, were included
under the term “mechanical.”

49 The great discovery of Descartes was not simply the application of
geometry; that had been done in simple cases ages before. Descartes recog-
nized the principle that every property of the curve was included in its equa-
tion, if only it could be brought out. Thus Leibniz’s greatest achievement
was the recognition that the differential coefficients were also functions of the
abscissa. The word function was applied to certain straight lines dependent
on the curve, such as the abscissa itself, the ordinate, the chord, the tangent,
the perpendicular, and a number of others (Cantor, III, preface, p. v). This
definition is from a letter to Huygens in 1694. There is therefore a great
advance made by 1714, the date of the Historia, since here it is at least
strongly hinted that Leibniz has the algebraical idea of a function.

50 With regard to Newton, at least, this is untrue. Without a direct
reference to the original manuscript of Newton it is quite impossible to state
whether even Newton wrote 0 or o; even then there may be a difficulty in
deciding, for Gerhardt and Weissenborn have an argument over the matter,
while Reiff prints it as 0. However this may be there is no doubt that Newton
considered it as an infinitely small unit of time, only to be put equal to zero
when it occurred as a factor of terms in an expression in which there also
occurred terms that did not contain an infinitesimally small factor. This was
bound to be the case, since Newton’s # and y were velocities. In short, ex-
pressing Newton’s notation in that of Leibniz, we have

xo or 20 = (dx/dt). dt

and therefore o is an infinitesimal or a differential equal to Leibniz’s d.

51 This is in a restricted sense true. No one seems to have felt the need
of a second differentiation of an original function; those, who did, differen-
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precisely the same amount of justice as his opponents display in
now assigning such discoveries to Newton, any one could equally
well assign the geometry of Descartes to Apollonius, who, although
he possessed the essential idea of the calculus, yet did not possess
the calculus.

For this reason also the new discoveries that were made by the
help of the differential calculus were hidden from the followers
of Newton’s method, nor could they produce anything of real
value nor even avoid inaccuracies until they learned the calculus
of Leibniz, as is found in the investigation of the catenary as made
by David Gregory.52 But these contentious persons have dared to
misuse the name of the English Royal Society, which body took
pains to have it made known that no really definite decision was
come to by them; and this is only what is worthy of their repu-
tation for fair dealing, in that one of the two parties was not heard,
indeed my friend himself did not know that the Royal Society had
undertaken an inquiry into the matter. Else the names of those
to whom it had entrusted the report would have been communi-
cated to him,53 so that they might either be objected to, or equipped
for their task. He indeed, astounded not by their arguments but
by the fictions that pervaded their attack on his good faith, con-
sidered such things unworthy of a reply, knowing as he did that
it would be useless to defend his case before those who were un-
acquainted with this subject (i. e., the great majority of readers) ;
also feeling that those who were skilled in the matter under dis-
cussion would readily perceive the injustice of the charge.* To
this was added the reason that he was absent from home when
these reports were circulated by his opponents, and returning home
after an interval of two years and being occupied with other busi-

tiated once, and then worked upon the function thus obtained a second time
in the same manner as in the first case. Barrow indeed considered only
curves of continuous curvature, and the tangents to these curves; but Newton
has the notation #, etc. But the idea had been used by Slusius in his Meso-
labum (1659), where a general method of determining points of inflection is
made to depend on finding the maximum and minimum values of the sub-
tangent. Lastly, it can hardly be said that Leibniz’s interpretation of [/ ever
attained to the dignity of a double integral in his hands.

52 David Gregory is not the only sinner! Leibniz, using his calculus, makes
a blunder over osculations, and will not stand being told about it; he simply
repeats in answer that he is right (Rouse Ball's Short History).

53 The names of the committee were not even published with their report.
In fact the complete list was not made public until De Morgan investigated
the matter in 1852! For their names see De Morgan’s Newton, p. 27.

5¢ What then made Leibniz change his mind?
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ness, it was then too late to find and consult the remains of his own
past correspondence from which he might refresh his memory about
matters that had happened so long ago as forty years previously.
For transcripts of very many of the letters once written by him
had not been kept; besides those that Wallis found in England and
published with his consent in the third volume of his works, Leibniz
himself had not very many.

Nevertheless, he did not lack for friends to look after his fair
name; and indeed a certain mathematician, one of the first rank
of our time55 well skilled in this branch of learning and perfectly
unbiased, whose good-will the opposite party had tried in vain to
obtain, plainly stated, giving reasons of his own finding, and let
it be known, not altogether with strict justice, that he considered that
not only had that rival not invented the calculus, but that in addi-
tion he did not understand it to any great extent.’¢ Another friend
of the inventor’” published these and other things as well in a short
pamphlet, in order to check their base contentions. However it
was of greater service to make known the manner and reasoning
by which the discoverer arrived at this new kind of calculus; for
this indeed has been unknown up till now, even to those perchance,
who would like to share in this discovery. Indeed he himself had
decided to explain it, and to give an account of the course of his
researches in analysis partly from memory and partly from extant
writings and remains of old manuscripts, and in this manner to
illustrate in due form in a little book the history of this higher
learning and the method of its discovery. But since at the time
this was found to be impossible owing to the necessities of other
business, he allowed this short statement of part of what there was
to tell upon the matter to be published in the meantime by a friend
who knew all about it,’® so that in some measure public curiosity
should be satisfied.

551t is established that this was Johann (John) Bernoulli; see Cantor,
II1, p. 313f; Gerhardt gives a reference to Bossut’s Geschichte, Part 11, p. 219,

86 This seems to be an_ intentional misquotation from Bernoulli’s letter,
which stated that Newton did not understand the meaning of higher differen-
tiations. At least, that is what Cantor says was given in the pamphlet.

57 It is established that the pamphlet referred to was also an anonymous
contribution by Leibniz himself! Is it strange that hard things are both
thought and said of such a man?

58 Again this is Leibniz himself! Had he then no friends at all to speak
for him and dare subscribe their signatures to the opinion? Unfortunately
Tschirnhaus was dead at the time of the publication of the Commercium
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The author of this new analysis, in the first flower of his
youth, added to the study of history and jurisprudence other more
profound reflections for which he had a natural inclination. Among
the latter he took a keen delight in the properties and combinations
of numbers; indeed, in 1666 he published an essay, De Arte Com-
binatoria, afterward reprinted without his sanction. Also, while
still a boy, when studying logic he perceived that the ultimate ana-
lysis of truths that depended on reasoning reduced to two things,
definitions and identical truths, and that these alone of the essentials
were primitive and undemonstrable. When it was stated in contra-
diction that identical truths were useless and nugatory, he gave
illustrative proofs to the contrary. Among these he gave a demon-
stration that that mighty axiom, “The whole is greater than its
part,” could be proved by a syllogism of which the major term was

Epistolicum, but he could have spoken with overwhelming authority, as Leib-
niz’s co-worker in Paris, at any time between the date of Leibniz’s review of
Newton’s De Quadratura in the Acta Eruditorum until his death in 1708, even
if he had died before the publication of Keill’s attack in the Phil. Trans. of
that year was made known to him. Does not this silence on the part of
Tschirnhaus, the personal friend of Leibniz, rather tend to make Leibniz’s
plea, that his opponents had had the shrewdness to wait till Tschirnhaus,
among others, was dead, recoil on his own head, in that he has done the very
same thing? Leibniz must have known the feeling that this review aroused in
England, and, Huygens being dead, Tschirnhaus was his only reliable witness.
Of course I am not arguing that Leibniz did found his calculus on that of
Newton: I am fully convinced that they both were indebted to Barrow,
Newton being so even more than Leibniz, and that they were perfectly inde-
pendent of one another in the development of the analytical calculus. Newton,
with his great knowledge of and inclination toward geometrical reasoning,
backed with his personal intercourse with Barrow, could appreciate the finality
of Barrow’s proofs of the differentiation of a product, quotient, power, root,
logarithm and exponential, and the trigonometrical functions, in a way that
Leibniz could not. But Newton never seems to have been accused of plagiar-
ism from Barrow; even if he had been so accused, he probably had ready
as an answer, that Barrow had given him permission to make any use he
liked of the instruction that he obtained from him. Leibniz, when so accused,
replied by asserting, through confusion of memory I suggest, that he got his
first idea from the works of Pascal. Each developed the germ so obtained in
his own peculiar way; Newton only so far as he required it for what he con-
sidered his main work, using a notation that was of greatest convenience to
him, and finally falling back on geometry to provide himself with what ap-
pealed to him as rigorous proof; Leibniz, more fortunate in his philosophical
training and his lifelong effort after symbolism, has ready to hand a notation,
almost developed and perfected when applied to finite quantities, which he
saw with the eye of genius could be employed as usefully for infinitesimals.
De Morgan justly remarks that one dare not accuse either of these great
men of deliberate untruth with regard to specific facts; but it must be ad-
mitted that neither of them can be considered as perfectly straightforward;
and the political similitude, which Cantor speaks of, in which nothing is too
bad to be said of an opponent, seems to have applied just as much to the
mathematician of the day as to the politician.
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a definition and the minor term an identity.’® For if one of two
things is equal to a part of another the former is called the less,
and the later the greater; and this is to be taken as the definition.
Now, if to this definition there be added the following identical
and undemonstrable axiom, “Every thing possessed of magnitude
is equal to itself,” i. e, A=A, then we have the syllogism:

Whatever is equal to a part of another, is less than that other:
(by the definition)

But the part is equal to a part of the whole:
(i. e., to itself, by identity)

Hence the part is less than the whole. Q. E. D.

As an immediate consequence of this he observed that from
the identity A = A, or at any rate from its equivalent, A-A =0, as
may be seen at a glance by straightforward reduction, the following
very pretty property of differences arises, namely:

A —-A+B -B+C —-C+D —-D+E —-E = O
—— ee— e
+ L + M + N + P

If now A, B, C, D, E are supposed to be quantities that con-
tinually increase in magnitude, and the differences between suc-
cessive terms are denoted by L, M, N, P, it will then follow that

A+L+M+N+P-E =0,
i.e., L+M+N+P=E-A;

that is, the sums of the differences between successive terms, no
matter how great their number, will be equal to the difference

59 This was given in more detail in the first draught of this essay (G. 1846,
p. 26) : Hitherto, while still a pupil, he kept trying to reduce logic itself to the
same state of certainty as arithmetic. He perceived that occasionally from the
first figure there could be derived a second and even a third, without employ-
ing conversions (which themselves seemed to him to be in need of demonstra-
tion), but by the sole use of the principle of contradiction. Moreover, these
very conversions could be proved by the help of the second and third ﬁgures,
by employing theorems of identity; and then now that the conversion had
been proved, it was possible to prove a fourth figure also by its help, and this
latter was thus more indirect than the former figures. He marveled very
much at the power of identical truths, for they were generally considered to
be useless and nugatory. But later he considered that the whole of arithmetic
and geometry arose from identical truths, and in general that all undemon-
strable truths depending on reasoning were identical, and that these combined
with definitions yield identical truths. He gave as an elegant example of this
analysis a proof of the theorem, The whole is greater than its part.
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between the terms at the beginning and the end of the series.%
For example, in place of A, B, C, D, E, let us take the squares,
0,1, 4,9, 16, 25, and instead of the differences given above, the
odd numbers, 1, 3, 5, 7, 9, will be disclosed ; thus

0 1 4 9 1§ 25
1 3 5 7 9

From which is evident that

1+3+5+7+9=25-0=25,
and 3+5+47+9=25-1=24;

and the same will hold good whatever the number of terms or the
differences may be, or whatever numbers are taken as the first and
last terms. Delighted by this easy, elegant theorem, our young friend
considered a large number of numerical series, and also proceeded
to the second differences or differences of the differences,’! the

60 It is fairly certain that Leibniz could not possibly at this time have
perceived that in this theorem he has the germ of an integral. The path to
the higher calculus lay through geometry. As soon as Leibniz attained to a
sufficient knowledge of this subject he would recognize the area under a curve
between a fixed ordinate and a variable one as a set of magnitudes of the
kind considered, the ordinates themselves being the differences of the set; he
would see that there was no restriction on the number of steps by which the
area attained its final size. Hence, in this theorem he has a proof to hand
that integration as a determination of an area is the inverse of a difference.
This does not mean the inverse of a differentiation, i. e., the determination
of a rate, or the drawing of a tangent. As far as I can see, Leibniz was far
behind Newton in this, since Newton’s fluxions were founded on the idea of
a rate; also Leibniz apparently does not demonstrate the rigor of a method of
infinitely narrow rectangles. )

611t is a pity that we are not told the date at which Leibniz read his
Wallis; it is a greater pity that Gerhardt did not look for a Wallis in the
Hanover Library and see whether it had the date of purchase on it (for I
have handled lately several of the books of this time, and in nearly every
case I found inserted on the title page the name of the purchaser and the date
of purchase). I make this remark, because there arises a rather interesting
point. Wallis, in his Arithmetica Infinitorum, takes as the first term of all his
series the number 0, and in one case he mentions that the differences of the dif-
ferences of the cubes is an arithmetical series. He also works out fully the sums
of the figurate numbers (or as Leibniz calls them the combinatory numbers) ;
the general formulas for these sums he calls their characteristics. He also re-
marks on the fact that any number (see table, p. 32) can be obtained by the addi-
tion of the one before it and the one above it (which is itself the sum of all the
numbers in the preceding column above the one to the left of that which he
wishes to obtain). Thus, in the fourth column 4 is the sum of 3 (to the left)
and I (above), i. e, the sum of the two first numbers in column three; 10
is the sum of 6 (to the left) and 4 (above, which has been shown to be the
sum of the first two numbers of column three), and therefore 10 is the sum
of the first three numbers in column three. Now my point is, assuming it to
have been impossible that Leibniz had read Wallis at the time that he was
compiling his De Arte, we have here another example, free from all suspicion,
of that series of instances of independent contemporary discoveries that seems
to have dogged Leibniz’s career.



32 THE EARLY MANUSCRIPTS OF LEIBNIZ.

third differences or the differences between the differences of the
differences, and so on. He also observed that for the natural num-
bers, i. e., the numbers in order proceeding from O, the second
differences vanished, as also did the third differences for the
squares, the fourth differences for the cubes, the fifth for the bi-
quadrates, the sixth for the surdesolids,®? and so on; also that the
first differences for the natural numbers were constant and equal -
to 1; the second differences for the square, 1.2, or 2; the third for
the cubes, 1.2.3, or 6; the fourth for the biquadrates, 1.2.3.4,
or 24; the fifth for the surdesolids, 1.2.3.4.5, or 120, and so on.
These things it is admitted had been previously noted by others,
but they were new to him, and by their easiness and elegance were
in themselves an inducement to further advances. But especially
he considered what he called “combinatory numbers,” such as are
usually tabulated as in the margin. Here

a preceding series, either horizontal or 1 1 1 1 1 1
vertical, always contains the first differ- 1 2 3 4 5 6
ences of the series immediately following 1 3 6 10 15 21
it, the second differences of the one next 1 4 10 20 35 56
after that, the third differences of the 1 5 15 35 70 126
third, and so on. Also, each series, either 1 6 21 56 126 252
horizontal or vertical contains the sums of 1 7 28 84 210 462

the series immediately preceding it, the

sums of the sums or the second sums of the series next before
that, the third sums of the third, and so on. But, to give something
not yet common knowledge, he also brought to light certain general
theorems on differences and sums, such as the following. In the
series, a, b, ¢, d, e, etc., where the terms continually decrease without
limit we have

Terms a &b ¢ d e etc

1st diff. f g Lk 7 k etc

2nd diff. I m n o p et

3rd diff. g r s ¢t wu etc

4th diff. B vy 3 € 6 |etc
etc. Yy -~ v p v etc.

82 The name surdesolid to denote the fifth power is used by Oughtred,
according to Wallis. By Cantor the invention of the term seems to be credited
to Dechales, who says, “The fifth number from unity is called by some people
the quadrato-cubus, but this is ill-done, since it is neither a square nor a cube
and cannot thus be called the square of a cube nor the cube of a square: we
shall call it supersolldus or surde solidus” (Cantor, III, p. 16) Wallis himself
uses “sursolid.”
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Taking @ as the first term, and o as the last, he found

a—o=1f +1g+ 12+ 1i+ 1% + etc.
a—o0=1 +2m+ 32+ 4o+ 5p+ etc.
a—o=1g7 4+ 3»r + 6s + 10¢f + 15« + etc.
a — o =18+ 4y + 108 4 20¢ 4 3560 + etc.
etc.

Again we havet?

+ 1f
+1f—17
41 —2041g

a — 0=

+1f—3/ 43¢ —18B
+ 1f — 4/ + 6 — 48 + 111
etc. etc. ete,

Hence, adopting a notation invented by him at a later date, and
denoting any term of the series generally by vy (in which case a=y
as well), we may call the first difference dy, the second ddy, the
third d3y, the fourth d*y; and calling any term of another of the
series #, we may denote the sum of its terms by (=, the sum of
their sums or their second sum by f fx, the third sum by (3, and
the fourth sum by f“x. Hence, supposing that

141+1+1+1+etc.=2,
or that x represents the natural numbers, for which dx =1, then

63 This theorem is one of the fundamental theorems in the theory of the
summation of series by finite differences, namely,

Aty =ty — 5 Cy - Upm_y FmCy - U m_, — etc,

which is usually called the direct fundamental theorem; for although Leibniz
could not have expressed his results in this form since he did not know the
sums of the figurate numbers as generalized formulas (or I suppose not, if
he had not read Wallis), and apparently his is only a special case, yet it
must be remembered that any term of the first series can be chosen as the
first term. It is interesting to note that the second fundamental theorem, the
inverse fundamental theorem, was given by Newton in the Principia, Book
111, lemma V, as a preliminary to the discussion on comets at the end of this
book. Here he states the result, without proof, as an interpolation formula;
(it is frequently referred to as Newton’s Interpolation Formula); it may
however be used as an extrapolation formula, in which case we have

U, = Yy, + nCy - Athy +,C, - A2, 4 etc.
In the two formulas as given here, the series are
u, u, u, “, 4, etc.
Au,  NAuw, Nuw, NAu,  etc
Az, N, N, etc. and so on.
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1+3+ 6+10+etc.=fx,
1+4+10+20+etc. = f f,
1+5+15+35+etc. = [,

-and so on. Finally it follows that
y-w=0dy.x~ddy. fx+d%. [ fr—d*y. (35 +etc.;

and this is equal to v, if we suppose that the series is continued to
infinity, or that o becomes zero. Hence also follows the sum of
the series itself, and we have

fy=yx—dy.fx+ddy.ffx—d3y.f3x+etc.54

These two like theorems possess the uncommon property that they
are equally true in either differential calculus, the numerical or the
infinitesimal ; of the distinction between them we will speak later.6

64 What are we to understand by the inclusion of this series in this con-
nection? Does Leibniz intend to claim this as his? I have always under-
stood that this is due to Johann Bernoulli, who gave it in the Acta Eruditorum
for 1694, in a slightly different form, and proved by direct differentiation; and
that Brook Taylor obtained it as a particular case of a general theorem in
and by finite differences. If Leibniz intended to claim it, he has clearly antici-
pated Taylor. It is quite possible that Leibniz had done so, even in his early
days; and as soon as in 1675, or thereabouts, he had got his signs for dif-
ferentiation and integration, it is possible that he returned to this result and
expressed it in the new notation; for the theorem follows so perfectly naturally
from the last expression given for a — w. But it is hardly probable, for Leibniz
would almost certainly have shown it to Huygens and mentioned it.

The other alternative is that here he is showing how easily Bernoulli’s
series could have been found in a much more general form, i. e., as a theorem
that is true (as he indeed states) for finite differences as well as for infini-
tesimals; the inclusion of this statement makes it very probable that this sup-
position is a correct one. This leads to a pertinent, or impertinent, question.
Brook Taylor's Methodus Incrementorum was published in 1715; the Historia
was written some time between 1714 and 1716; Gerhardt states that there were
two draughts of the latter, and that he is giving the second of these. In justice
to Leibniz there should be made a fresh examination of the two draughts, for
if this theorem is not given in the original draught it lays Leibniz open to
further charge of plagiarism. I fully believe that the theorem will be found
in the first draught as well and that my alternative suggestion is the correct one.

In any case, the tale of the Historia is confused by the interpolation of
the symbolism invented later (as Leibniz is careful to point out). The ques-
tion is whether this was not intentional. And this query is not impertinent,
considering the manner in which Leibniz refrains from giving dates, or when
we compare the essay in the Acta Eruditorum, in which he gives to the world
the description of his method. Weissenborn considers that “this is not adapted
to give an insight into his methods, and it certainly looks as if Leibniz wished
deliberately to prevent this.” Cf. Newton’s “anagram” (sic), and the Geom-
etry of Descartes, for parallels.

65 In reference to the employment of the calculus to diagrammatic geom-
etry, as will be seen later, Leibniz says:

“But our young friend quickly observed that the differential calculus
could be employed with figures in an even more wonderfully simple manner
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However, the application of numerical truths to geometry, as
well as the consideration of infinite series, was at that time at all
events unknown to our young friend, and he was content with the
satisfaction of having observed such things in series of numbers.
Nor did he then, except for the most ordinary practical rules, know
anything about geometry ;56 he had scarcely even considered Euclid
with anything like proper attention, being fully occupied with other
studies. However, by chance he came across the delightful con-
templation of curves by Leotaud, in which the author deals with
the quadrature of lunules, and Cavalieri’s geometry of indivisibles ;¢
having given these some slight consideration, he was delighted
with the facility of their methods. However, at the time he was in
no mind to go fully into these more profound parts of mathematics;
although just afterwards he gave attention to the study of physics
and practical mechanics, as may be understood from his essay that
he published on the Hypothesis of Physics.58

He then became a member of the Revision Council® of the
Most Noble the Elector of Mainz; later, having obtained permission
from this Most Gracious and Puissant Prince (for he had taken
our young friend into his personal service when he was about to

than it was with numbers, because with figures the differences were not com-
parable with the things which differed; and as often as they were connected
together by addition or subtraction, being incomparable with one another, the
less vanished in comparison with the greater.”

. %6 This makes what has just gone before date from the time previous to
his reading of the work of Cavalieri. See note following.

87 This is about the first place in which it is possible to deduce an exact
date, or one more or less exact. According to Leibniz’s words that imme-
diately follow it may be deduced that it was somewhere about twelve months
before the publication of the Hypothesis of Physics—if we allow for a slight
interval between the dropping of the geometry and the consideration of the
principles of physics and mechanics, and a somewhat longer interval in which
to get together the ideas and materials for his essay—that he had finished his
“slight consideration” of Leotaud and Cavalieri. This would make the date
1670, and his age 24.

. %8 This essay founded the explanation of all natural phenomena on mo-
tion, which in turn was to be explained by the presence of an all-pervading
ether; this ether constituted light.

89 The dedication of the Nova methodus in 1667 to the Elector of Mainz
(ancient name Moguntiacum) procured for Leibniz his appointment in the ser-
vice of the latter, first as an assistant in the revision of the statute-book, and
later on the more personal service of maintaining the policy of the Elector,
that of defending the integrity of the German Empire against the intrigues of
France, Turkey and Russia, by his pen.
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leave”® and go further afield) to continue his travels, he set out for
Paris in the year 1672. There he became acquainted with that
genius, Christiaan Huygens, to whose example and precepts he always
declared that he owed his introduction to higher mathematics. At
that time it so happened that Huygens was engaged on his work
with regard to the pendulum. When Huygens brought our young
friend a copy of this work as a present and in the course of conver-
sation discussed the nature of the center of gravity, which our
young friend did not know very much about, the former explained
to him shortly what sort of thing it was and how it could be in-
vestigated.”! This roused our young friend from his lethargy, for
he looked upon it as something of a disgrace that he should be ig-
norant of such matters.”?

Now it was impossible for him to find time for such studies
just then ; for almost immediately, at the close of the year, he crossed
the Channel to England in the suite of the envoy from Mainz, and
stayed there for a few weeks with the envoy. Having been intro-
duced by Henry Oldenburg, at that time secretary to the Royal
Society, he was elected a member of that illustrious body. He did
not however at that time discuss geometry with any one (in truth
at that time he was quite one of the common herd as regards this
subject) ; he did not on the other hand neglect chemistry, con-
sulting that excellent man, Robert Boyle, on several occasions. He
also came across Pell accidentally, and he described to him certain
of his own observations on numbers; and Pell told him that they
were not new, but that it had been recently made known by Nico-
laus Mercator, in his Hyperbolae Quadratura, that the differences
of the powers of the natural numbers, when taken continuously,
finally vanished; this made Leibniz obtain the work of Nicolaus

70 This probably refers to the time when his work on the statute-book
was concluded, and Leibniz was preparing to look for employment elsewhere.

71 This is worthy of remark, seeing that Leibniz had attempted to explain
gravity in the Hypothesis physica nova by means of his concept of an ether.
The conversation with Huygens had results that will be seen later in a manu-
script (see §4, p.65) where Leibniz obtains quadratures “ex Centrobarycis.”
It also probably had a great deal to do with Leibniz’s concept of a “moment.”

72 The use of the word weterno—which 1 have translated “lethargy” as
being the nearest equivalent to the fundamental meaning, the sluggishness of
old age—coupled with his remark that he was in no mind to enter fully into
these more profound parts of mathematics, sheds a light upon the reason why
he had so far done no geometry. Also the last words of the sentence give
the stimulus that made him cast off this lethargy; namely, shame that he
should appear to be ignorant of the matter. This would seem to be one of
the great characteristics of Leibniz, and might account for much, when we
come to consider the charges that are made against him.
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Mercator.”® At that time he did not become acquainted with
Collins; and, although he conversed with Oldenburg on literary
matters, on physics and mechanics, he did not exchange with him
even one little word on higher geomery, much less on the series of
Newton. Indeed, that he was almost a stranger to these subjects,
except perhaps in the properties of numbers, even that he had not
paid very much attention to them, is shown well enough by the
letters which he exchanged with Oldenburg, which have been lately
published by his opponents. The same fact will appear clearly
from those which they say have been preserved in England; but
they suppressed them,”# I firmly believe, because it would be quite
clear from them that up to then there had been no correspondence
between him and Oldenburg on matters geometrical. Nevertheless,
they would have it credited (not indeed with the slightest evidence
brought forward in favor of the supposition) that certain results
obtained by Collins, Gregory and Newton, which were in the pos-
session of Oldenburg, were communicated by him to Leibniz.

On his return from England to France in the year 1673,75
having meanwhile satisfactorily performed his work for the Most
Noble Elector of Mainz, he still by his favor remained in the ser-
vice of Mainz; but his time being left more free, at the instigation
of Huygens he began to work at Cartesian analysis (which afore-
time had been beyond him),’6 and in order to obtain an insight

73 We have here a parallel (or a precedent) for my suggestion that Leib-
niz was mentally confusing Barrow and Pascal as the source of his inspiration
for the characteristic triangle. For here, without any doubt whatever, is a
like confusion. What Pell told him was that his theorems on numbers oc-
curred in a book by Mouton entitled De diametris apparentibus Solis et Lunae
(published in 1670). Leibniz, to defend himself from a charge of plagiarism,
made haste to borrow a copy from Oldenburg and found to his relief that not
only had Mouton got his results by a different method, but that his own were
more general. The words in italics are interesting.

Of course these words are not italicized by Gerhardt, from whom this
account has been taken (G. 1848, p. 19); nor does he remark on Leibniz's
lapse of memory in this instance. Further there is no mention made of it in
connection with the Historia, i. e., in G. 1846, Is it that Gerhardt, as counsel
for the defense, is afraid of spoiling the credibility of his witness by proving

that part of his evidence is unreliable? Or did he not become aware of the
error till afterward? See Cantor, 111, p. 76.

7¢ An instance is referred to on p. 85 of De Morgan’s Newton, showing the
sort of thing that was done by the committee. This however is not connected
with a letter to Oldenburg, but to Collins. It may be taken as a straw that
shows the way the wind blew.

75 Observe that nothing has been said of the fact that Leibniz had pur-
chased a copy of Barrow and took it back with him to Paris.

78 Cf. the remark in the postscript to Bernoulli’s letter, where Leibniz says
that the work of Descartes, looked at at about the same time as Clavius, that
is, while he was still a youth, “seemed to be more intricate.”
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into the geometry of quadratures he consulted the Synopsis Geo-
metriae of Honoratus Fabri, Gregory St. Vincent, and a little book
by Dettonville (i. e., Pascal).”7 Later on from one example given
by Dettonville, a light suddenly burst upon him, which strange to
say Pascal himself had not perceived in it. For when he proves
the theorem of Archimedes for measuring the surface of a sphere
or parts of it, he used a method in which the whole surface of the
solid formed by a rotation round any axis can be reduced to an
equivalent plane figure. From it our young friend made out for
himself the following general theorem.”8

Portions of a straight line normal to a curve, intercepted
between the curve and an axis, when taken in order and applied at
right angles to the axis give rise to a figure equivalent to the
moment of the curve about the axis.”?

When he showed this to Huygens the latter praised him highly
and confessed to him that by the help of this very theorem he had
found the surface of parabolic conoids and others of the same sort,
stated without proof many years before in his work on the pendu-
lum clock. Our young friend, stimulated by this and pondering
on the fertility of this point of view, since previously he had con-
sidered infinitely small things such as the intervals between the
ordinates in the method of Cavalieri and such only, studied the
triangle ;Y D,Y, which he called the Characteristic Triangle,8

77 The lbellus referred to would seem to be the work on the cycloid,

vérritten_ by Pascal in the form of letters, from one Amos Dettonville, to M. de
arcavi.

78 This theorem is given, and proved by the method of indivisibles, as
Theorem I, of Lecture XII in Barrow’s Lectiones Geometricae; and Theorem
II is simply a corollary, in which it is remarked:

“Hence the surfaces of the sphere, both the spheroids, and the conoids
receive measurement....”

The proof of these two theorems is given at the end of this section as a
supplement. See also Note 46, for its significance.

79 The whole context here affords suggestive corroboration in favor of
the remarks made in Note 31 on the use of the word “moment,” though the
connection with the determination of the center of gravity is here over-
shadowed by its connection with the surface formed by the rotation of an arc
about an axis.

80 The figure given is exactly that given by Gerhardt, with the unim-
portant exception that, for convenience in printing, I have used U instead of
Gerhardt’s ©, a V instead of his 1 (a Hebrew T), and a Q for his II. T take
it, of course, that Gerhardt’s diagram is an exact transcript of Leibniz’s, and
it is interesting to remark that Leibniz seems to be endeavoring to use T’s
for all points on the tangent, and P’s for points on the normal, or perpendic-
ular, as it is rendered in the Latin.

This diagram should be compared with that in the “postscript” written
nine or ten years before. Note the complicated diagram that is given here.
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whose sides D,Y, D,Y are respectively equal to ,X,X, ,Z,Z%
parts of the coordinates or coabscissae AX, AZ, and its third side
,Y,Y a part of the tangent TV, produced if necessary.
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Fig. 3.

Even though this triangle is indefinite (being infinitely small),
yet he perceived that it was always possible to find definite triangles
similar to it. For, suppose that AXX, AZZ are two straight lines
at right angles, and AX, AZ the coabscissae, YX, YZ the coordi-
nates, TUV the tangent, PYQ the perpendicular, XT, ZU the sub-
téngents, XP, ZQ the subnormals; and lastly let EF be drawn

and the introduction of the secant that is ultimately the tangent, which does
not appear in the first figure. From what follows, this is evidently done in
order to introduce the further remarks on the similar triangles. It adds to the
confusion when an effort is made to determine the dates at which the several
parts were made out. For instance, the remark that finite triangles can be
found similar to the characteristic triangle probably belongs approximately to
thel date of his reply to the assertions of Nieuwentijt, which will be referred
to later.

81 The notation introduced in the lettering should be remarked. His early
manuscripts follow the usual method of the time in denoting different posi-
tions of a variable line by the same letter, as in Wallis and Barrow, though
even then he is more consistent than either of the latter. He soon perceives
the inconvenience of this method, though as a means of generalizing theorems
it has certain advantages. We therefore find the notation C, (C), ((C)), for
three consecutive points on a curve, as occurs in a_manuscript dated (or it
should be) 1675. This notation he is still using in 1703; but in 1714, he em-
ploys a subscript prefix. This is all part and parcel with his usual desire to
standardize and simplify notations.
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parallel to the axis AX ; let the tangent TY meet EF in V, and from
V draw VH perpendicular to the axis. Then the triangles ,YD,Y,
TXY, YZU, TAU, YXP, QZY, QAP, THV, and as many more
of the sort as you like, are all similar. For example, from the
similar triangles ;YD ,Y,,Y ,XP, we have P,Y., YD =,Y ,X.,Y,Y;
that is, the rectangle contained by the perpendicular P,Y and , YD (or
the element of the axis, ;X ,X) is equal to the rectangle contained
by the ordinate ,Y ,X and the element of the curve, ;Y ,Y, that is, to
the moment of the element of the curve about the axis. Hence the
whole moment of the curve is obtained by forming the sum of these
perpendiculars to the axis.
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Also, on account of the similar triangles ,YD,Y, THV, we
have ,Y,Y :,YD=TV:VH, or VH.,Y,Y=TV.,YD; that is,
the rectangle contained by the constant length VH and the element
of the curve, ,Y,Y, is equal to the rectangle contained by TV and
. YD, or the element of the coabscissa, ,Z,Z. Hence the plane
figure produced by applying the lines TV in order at right angles
to AZ is equal to the rectangle contained by the curve when
straightened out and the constant length HYV.

Again, from the similar triangles ,YD,Y, ,Y ,XP, we have
.YD:D,Y=,Y ,X:,XP, and thus ,XP.,YD=,Y,X.D,Y, or
the sum of the subnormals ,XP, taken in order and applied to the
axis, either to ;YD or to ,X,X, will be equal to the sum of the
products of the ordinates ,Y ,X and their elements, ,YD, taken in
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order. But straight lines that continually increase from zero, when
each is multiplied by its element of increase, form altogether a
triangle. Let then AZ always be equal to ZL, then we get the
right-angled triangle AZL, which is half the square on AZ; and
thus the figure that is produced by taking the subnormals in order
and applying them perpendicular to the axis will be always equal
to half the square on the ordinate. Thus, to find the area of a
given figure, another figure is sought such that its subnormals are
respectively equal to the ordinates of the given figure, and then this
second figure is the quadratrix of the given one; and thus from
this extremely elegant consideration we obtain the reduction of
the areas of surfaces described by rotation®? to plane quadratures,
as well as the rectification of curves; at the same time we can
reduce these quadratures of figures to an inverse problem of
tangents. From these results,8 our young friend wrote down a
large collection of theorems (among which in truth there were
many that were lacking in elegance) of two kinds. For in some
of them only definite magnitudes were dealt with, after the manner
not only of Cavalieri, Fermat, Honoratus Fabri, but also of Gregory
St. Vincent, Guldinus, and Dettonville; others truly depended on
infinitely small magnitudes, and advanced to a much greater extent.
But later our young friend did not not trouble to go on with these
matters, when he noticed that the same method had been brought
into use and perfected by not only Huygens, Wallis, Van Huraet,
and Neil, but also by James Gregory and Barrow. However it
did not seem to me to be altogether useless to explain at this junc-
ture, as is plain from what I have given?* the steps by which he
attained to greater things, and also the manner in which, as if
led by the hand, those who are at present but beginners8 with regard

82 This sentence conclusively proves that Leibniz’s use of the moment was
for the purposes of quadrature of surfaces of rotation.

83 “From these results”—which I have suggested he got from Barrow—
“our young friend wrote down a large collection of theorems.” These theo-
rems Leibniz probably refers to when he says that he found them all to have
been anticipated by Barrow, “when his Lectures appeared.” 1 suggest that
the “results” were all that he got from Barrow on his first reading, and that
the “collection of theorems” were found to have been given in Barrow when
Leibniz referred to the book again, after his geometrical knowledge was im-
proved so far that he could appreciate it.

8¢ The use of the first person is due to me. The original is impersonal,
but is evidently intended by Leibniz to be taken as a remark of the writer, “the
friend who knew all about it.” The distinction is marked better by the use
of the first personal pronoun than in any other way.

85 Query, all except Leibniz, the Bernoullis, and one or two others.
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to the more abstruse parts of geometry may hope to rise to greater
heights.

Now Leibniz worked these things out at Paris in the year 1673
and part of 1674. But in the year 1674 (so much it is possible to
state definitely), he came upon the well-known arithmetical tetra-
gonism ;® and it will be worth while to explain how this was accom-
plished. He once happened to have occasion to break up an area
into triangles formed by a number of straight lines meeting in a

T

At --Soy

Fig. 4.
point, and he perceived that something new could be readily ob-
tained from it.%7
In Fig. 4, let any number of straight lines, AY, be drawn to
the curve AYR, and let any axis AC be drawn, and AE, a normal
or coaxis to it; and let the tangent at Y to the curve cut them in
T and U. From A draw AN perpendicular to the tangent; then

86 Tetragonism = quadrature; the arithmetical tetragonism is therefore
Leibniz’s value for ™ as an infinite series, namely,
“The area of a circle, of which the square on the diameter is equal to
unity, is given by the series
1 1 1 1 1 1 ,
1 7t 7+t 9 — o Tt
87 This is clearly original as far as Leibniz is concerned; but the con-
sideration of a poldr diagram is to be found in many places in Barrow.
Barrow however forms the polar differential triangle, as at the present time,
and does not use the rectangular coordinate differential triangle with a polar
figure; nor does Wallis. We see therefore that Leibniz, as soon as ever he
foll<c)lws his own original line of thinking, immediately produces something
good.
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it is plain that the elementary triangle A |Y ,Y is equal to half the
rectangle contained by the element of the curve ,Y,Y and AN.
Now draw the characteristic triangle mentioned above, ,YD,Y, of
which the hypotenuse is a portion of the tangent or the element of
the arc, and the sides are parallel to the axis and the coaxis. It
is then plain from the similar triangles ANU, ,YD,Y, that
Y,Y: YD=AU:AN, or AU.,YD or AU.,X ,X is equal to
AN.,;Y .Y, and this, as has been already shown, is equal to double
the triangle A ;Y ,Y. Thus if every AU is supposed to be trans-
ferred to XY, and taken in it as AZ,38 then the trilinear space AXZA
so formed will be equal to twice the segment AY_A,* included be-
tween the straight line AY and the arc AY. In this way are ob-
tained what he called the figures of segments or the proportionals
of a segment. A similar method holds good for the case in which
the point is not taken on the curve, and in this manner he obtained
the proportional trilinear figures for sectors cut off by lines meeting
in the point; and even when the straight lines had their extremities
not in a line but in a curve (which one after the other they touched),
none the less on that account were useful theorems made out.9
But this is not a fit occasion to follow out such matters; it is suffi-
cient for our purpose to consider the figures of segments, and that
too only for the circle. In this case, if the point A is taken at the
beginning of the quadrant AYQ, the curve AZQZ will cut the circle
at Q, the other end of the quadrant, and thence descending will be
asymptotic to the base BP (drawn at right angles to the diameter
at its other end B) ; and, although extending to infinity, the whole

88 This is evidently a misprint; it is however curious that it is repeated
in the second line of the next paragraph. Probably, therefore, it is a mis-
reading due to Gerhardt, who mistakes AZ for the letters XZ, as they ought
to be; and has either not verified them from the diagram, or has refrained
from making any alteration.

89 The symbol _ is here to be read as “and then along the arc to.”

90 Probably refers to Leibniz’s work on curvature, osculating circles, and
evolutes, as given in the Acta Eruditorum for 1686, 1692, 1694. It is to be
noted that with Leibniz and his followers the term evolute has its present
meaning, and as, such was first considered by Huygens in connection with the
cycloid and the pendulum. It signified something totally different in the work
of Barrow, Wallis and Gregory. With them, if the feet of the ordinates of
a curve are, as it were, all bunched together in a point, so as to become the
radit vectores of another curve, without rupturing the curve more than to
alter its curvature (the area being thus halved), then the first curve was
called the evolute of the second and the second the involute of the first. See
Barrow’s Lectiones Geometricae, Lecture XII, App. III, Prob. 9, and Wallis’s
Arithmetica Infinitorum, where it is shown that the evolute, in this sense, of
a parabola is a spiral of Archimedes.
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figure, included between the diameter AB, the base BP...., and the
curve AZQZ.... asymptotic to it, will be equal to the circle on
AB as diameter. ’

T

But to come to the matter under discussion, take the radius
as unity, put AX or UZ = », and AU or AZ = 2, then we have
x=2z2z2:, 1+22 and the sum of all the #’s applied to AU, which
at the present time we call [xdz, is the trilinear figure AUZA,
which is the complement of the trilinear figure AXZA, and this
has been shown to be double the circular segment.

The author obtained the same result by the method of trans-
mutations, of which he sent an account to England.?? It is required

to form the sum of all the ordinates V/(1-xx)=y; suppose
y== 13 2z from which ¥ =22:, 1422, and y=*x 22 = 1,:, 22+ 1;
and thus again all that remains to be done is the summation of
rationals.

This seemed to him to be a new and elegant method, as it
did to Newton also, but it must be acknowledged that it is not

91 The colon is used as a sign of division, and the comma has the sig-
nificance of a bracket for all that follows. It is curious to notice that Leibniz
still adheres to the use of xx for 2, while he uses the index notation for all
the higher powers, just as Barrow did; also, that the bracket is used under the

sign for a square root, and that too in addition to the vinculum. For an easy
geometrical proof of the relation x = 222/(1 + 22), see Note 94.

92 See Cantor, III, pp. 78-81. Also note the introduction of what is now
a standard substitution in integration for the purpose of rationalization.



HISTORIA ET ORIGO. 45

of universal application. Moreover it is evident that in this way
the arc may be obtained from the sine, and other things of
the same kind, but indirectly. So when later he heard that these
things had been derived in a direct manner by Newton with the
help of root-extractions,®® he was desirous of getting a knowledge
of the matter.

From the above it was at once apparent that, using the method
by which Nicolaus Mercator had given the arithmetical tetragonism
of the hyperbola by means of an infinite series, that of the circle
might also be given, though not so symmetrically, by dividing by
1+ 22, in the same way that the former had divided by 1+2. The
author, however, soon found a general theorem for the area of any
central conic. Namely, the sector included by the arc of a conic
section, starting from the vertex, and two straight lines joining
its ends to the center, is equal to the rectangle contained by the
semi-transverse axis and a straight line of length

1y, 15,1, .
t=* 3 4+ 5 IalEs 7 I R ,
where ¢ is the portion of the tangent at the vertex intercepted
between the vertex and the tangent at the other extremity of the
arc, and unity is the square on the semi-conjugate axis or the rect-
angle contained by the halves of the latus-rectum and the transverse
axis, and = is to be taken to mean + for the hyperbola and — for the
circle or the ellipse. Hence if the square of the diameter is taken to
be unity, then the area of the circle is

1 1 1 1 1
173 5 7t 9™

1
1 + etc.

11

. 93 This term represents what is now generally known as the method of
inversion of series. Thus, if we are given

x =y + ay? + by® +- cy* + etc,

where # and y are small, then y=wx is a first approximation; hence since
y=x—ay?— by3 — ¢yt —etc., we have as a second approximation

y=x—ax?;

substituting this in the term containing 2, and the first approximation, y = 7,
in the term containing y3, we have

y=x—a(xr—ax2)2 —bar3=ux—ax?+ (202 —b)23,
as a third approximation; and so on.

94 The relation » =222/(1-+} 22) can be easily proved geometrically for
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When our friend showed this to Huygens, together with a
proof of it, the latter praised it very highly, and when he returned
the dissertation said, in the letter that accompanied it, that it
would be a discovery always to be remembered among mathe-
maticians, and that in it the hope was born that at some time it
might be possible that the general solution should be obtained
either by exhibiting its true value or by proving the impossibility
of expressing it in recognized numbers.?5> There is no doubt that
neither he nor the discoverer, nor yet any one else in Paris, had
heard anything at all by report concerning the expression of the
area of a circle by means of an infinite series of rationals (such
as afterward it became known had been worked out by Newton and
Gregory). Certainly Huygens did not, as is evident from the short
the circle; hence, by using the orthogonal projection theorem, Leibniz’s result
for the central conic can be immediately derived.

Thus suppose that, in the diagrams below, AC is taken to be unity, then

AU==zand AX =ux.
Then, in either figure, since the As BYX, CUA are similar,

AX:XB=AX.XB:XBz2=XY2: XB2= AU2: CAz2;
hence, for the circle, we have

AX:AB=AU2: AC2 4 AUZ, or v =222/(1 4 22);
and similarly for the rectangular hyperbola

AX:AB=AU2: AC2— AU?, or »+ =222/(1—22).

Applying all the #’s to the tangent at A, we have (by division and inte-
gration of the right-hand side, term by term, in the same way as Mercator)

: area AUMA =2(23/3 5= 25/5 4 27/7 ¢ etc.)

Now, since the triangles UAC, YXB are similar, UA.XB=AC.XY;
hence 2AAYC = 2UA.AC x UA.AX = 2UA.AC = AUMA x 2seg. AYA,
for Leibniz has shown that AXMA =2 seg. AYA; hence it follows immediately
that

sector ACYA = z = 23/3 + 25/5 = etc.

If now, keeping the vertical axis equal to unity, the transverse axis is
made equal to a, Leibniz’s general theorem follows at once from the orthogonal
projection relation. )

Note that z is, from the nature of the diagrams, less than 1.

95 Wallis’s expression for m as an infinite product, given in the Arith-
metica (or Brouncker’s derived expression in the form of an infinite con-
tinued fraction), or the argument used by Wallis in his work, could not pos-
sibly be taken as a proof that 7 could not be expressed in recognized numbers.
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letter from him that I give herewith.96... Thus Huygens believed
that it was now proved for the first time that the area of a circle
was exactly equal to a series of rational quantities. Leibniz (relying
on the opinion of Huygens, who was well versed in such matters),
believed the same thing and so wrote those two letters to Oldenburg
in 1674, which his opponents have published, in which he announces
it as a new discovery ;%7 indeed he went so far as to say that he,
before all others, had found the magnitude of the circle expressed
as a series of rational numbers, as had already been done in the
case of the hyperbola.®® Now, if Oldenburg had already communi-
cated to him during his stay in London the series of Newton and
Gregory,® it would have been the height of impudence for him
to have dared to write in this way to Oldenburg; and either forget-
fulness or collusion on the part of Oldenburg in not charging him
with the deceit. For these opponents publish the reply of Olden-
burg, in which he merely points out (he says “I do not wish you
to be unaware....”) that similar series had been noted by Gregory
and Newton; and these things also he communicated in the year
following in a letter (which they publish) written in the month of
April1®  From which it can be seen that they are blinded with
envy or shameless with spite who dare to pretend that Oldenburg
had already communicated those things to him in the preceding
year. Yet there may be some blindness in their spite, because they
do not see that they publish things by which their lying statements
are refuted, nor that it would have been far better to have suppressed
these letters between him and Oldenburg, as they have done in the
case of others, either wholly or in part. Besides, from this time
onwards he begins to correspond with Oldenburg about geometry ;
that is, from the time when he, who up till then had been but a

96 The letter that is missing would no doubt have been given, in the event
of the Historia being published. According to Gerhardt it is to be found in

gh.ml;lrgem'i. ...exercitationes, ed. Uylenbroeck, Vol. I, p. 6, under date Nov.

97 Collins wrote to Gregory in Dec. 1670, telling him of Newton’s series
for a sine, etc.; Gregory replied to Collins in Feb. 1671, giving him three
series for the arc, tangent and secant; these were probably the outcome of his
work on Vera Circuli (1667).

98 By Mercator; query, also an allusion to Brouncker’s article in the
Phil. Trans., 1668.

99 Quite conclusive; no other argument seems required.

100 This date, April 12, 1675, is important; it marks the time when Leibniz
first began to speak of geometry in his correspondence with Oldenburg, as he
says below.
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beginner in this subject, first found out anything that he considered
worthy to be communicated ; and former letters written from Paris
on March 30, April 26, May 24, and June 8, in the year 1673,
which they say they have at hand but suppress, together with the
replies of Oldenburg, must undoubtedly have dealt with other
matters and have nothing in them to render those fictitious com-
munications from Oldenburg the more deserving of belief. Again,
when our young friend heard that Newton and Gregory had dis-
covered their series by the extraction of roots,'°! he acknowledged
that this was new to him, nor at first did he understand it very
much; and he confessed as much quite frankly and asked for in-
formation on certain points, especially for the case in which re-
ciprocal series were sought, by means of which from one infinite
series the root was extracted by means of another infinite series.
And from this also it is evident that what his opponents assert,
that Oldenburg communicated the writings of Newton to him,
is false; for if that were the truth, there would have been no need
to ask for further information. On the other hand, when he began
to develop his differential calculus, he was convinced that the new
method was much more universal for finding infinite series without
root-extractions, and adapted not only for ordinary quantities but
for transcendent quantities as well, by assuming that the series
required was given; and he used this method to complete his short
essay on the arithmetical quadrature; in this he also included other
series that he had discovered, such as an expression for the arc in
terms of the sine or the complement of the sine, and conversely
he showed how, by this same method, to find the sine or cosine
when the arc was given.192 This too is the reason why later he
stood in no need of other methods than his own; and finally, he
published his own new way of obtaining series in the Acta Erudi-
torum. Moreover, as it was at this time, just after he had published
the essay on the Arithmetical Quadrature in Paris, that he was

101 Newton obtained the series for arcsin # from the relation a: %=
1: V(1 —22), by expansion and integration, and then the series for the sine
by the “extraction of roots.” See Note 93, and, for Newton’s own modifica-
tion, Cantor, III, p. 73.

102 Tt would appear from this that Leibniz could differentiate the trigono-
metrical functions. Professor Love, on the authority of Cantor, ascribes them
to Cotes; but I have shown in an article in The Monist for April, 1916, that
Barrow had explicitly differentiated the tangent and that his figures could be
used for all the other ratios. Note the word “later” in the next sentence.
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recalled to Germany, having perfected the technique of the new
calculus he paid less attention to the former methods.

Now it is to be shown how, little by little, our friend arrived
at the new kind of notation that he called the differential calculus.
In the year 1672, while conversing with Huygens on the properties
of numbers, the latter propounded to him this problem:103

To find the sum of a decreasing series of fractions, of which
the numerators are all unity and the denominators are the triangu-
lar numbers; of which he said that he had found the sum among
the contributions of Hudde on the estimation of probability. Leib-
niz found the sum to be 2, which agreed with that given by Huy-
gens. While doing this he found the sums of a number of arith-
metical series of the same kind in which the numbers are any com-
binatory numbers whatever, and communicated the results to Olden-
burg in February 1673, as his opponents have stated. When later
he saw the Arithmetical Triangle of Pascal, he formed on the same
plan his own Harmonic Triangle.***

Arithmetical Triangle

in which the fundamental series is an arithmetical progression

1, 2, 3, 4, 5, 6, 7,

108 Probably only to test Leibniz’s knowledge.

104 Gerhardt states that in the first draft of the Historia, Leibniz had
bordered the Harmonic Triangle, as given here, with a set of fractions, each
equal to 1/1, so as to correspond more exactly with the Arithmetical Triangle.
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Harmonic Triangle
in which the fundamental series is a harmonical progression;

1
1
1 1
2 2
1 1 1
3 6 3
1 1 1 1
4 12 12 4
i 1 1 1 1
5 20 30 20 5
i 1 1 1 1 1
6 30 60 60 30 6
1 1 1 1 11 1

7 42 105 140 105 42 7

where, if the denominators of any series descending obliquely to
infinity or of any paralle] finite series, are each divided by the term
that corresponds in the first series, the combinatory numbers are
produced, namely those that are contained in the arithmetical tri-
angle. Moreover this property is common to either triangle, namely,
that the oblique series are the sum- and difference-series of one
another. In the Arithmetical Triangle any given series is the sum-
series of the series that immediately precedes it, and the difference-
series of the one that follows it; in the Harmonic Triangle, on the
other hand, each series is the sum-series of the series following it,
and the difference-series of the series that precedes it. From which
it follows that

Pededededededewnd

and so on.
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Now he had found out these things before he had turned to
Cartesian analysis; but when he had had his thoughts directed to
this, he considered that any term of a series could in most cases
be denoted by some general notation, by which it might be referred
to some simple series. For instance, if the general term of the
series of natural numbers is denoted by x, then the general term
of the series of squares would be 2, that of the cubes would be #%,
and so on. Any triangular number, such as 0, 1, 3, 6, 10, would be

zx.x+1 or xx + x
1.2 2

any pyramidal number, such as 0, 1, 4, 10, 20, etc.,, would be

x.x4+1.x+2 or x’+3xx+2x
1.2.3 6 ’

and so on.

From this it was possible to obtain the difference-series of a
given series, and in some cases its sum as well, when it was ex-
pressed numerically. For instance, the square is x#, the next greater
square is x4 +2x+1, and the difference of these is2x+1; i.e., the
series of odd numbers is the difference-series for the series of squares.
For,if xi5 0, 1, 2, 3, 4, etc,, then 2x+1is 1, 3, 5, 7, 9. In the
same way the difference between % and #*+3xx+3x+1 is 3xx+
3x+ 1, and thus the latter is the general term of the difference-series
for the series of cubes. Further, if the value of the general term
can thus be expressed by means of a variable # so that the variable
does not enter into a denominator or an exponent, he perceived
that he could always find the sum-series of the given series. For
instance, to find the sum of the squares, since it is plain that the
variable cannot be raised to a higher degree than the cube, he sup-
posed its general term z to be

z2=Ix3+mxrx +nx, where dz has to be xx;

we have dz=1d(x%) + m d(xx) +n, (where dx is taken =1); now
d(2%)=3xx+3x+1, and d(xx)=2x+1, as already found; hence

de =3lxx+3lx+ 14 2mx +m+n 2 xx105

1 1 1 1 1
therefore / = 3,m=— z,and 3~ +n=0, orn=-6—,

. 105 The sign here used appears to be an invention of Leibniz to denote an
identity, such as is denoted by = at present.
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and the general term of the sum-series for the squares is
——x3 xx+—x or 23— 3xx + x,:6.1%

As an example, if it is desired to find the sum of the first nine
or ten squares, i. e., from 1 to 81 or from 1 to 100, take for x the
values 10 or 11, the numbers next greater than the root of the last
square, and 22" —3xx+x,:6 will be 2000- 300+ 10,:6 =285, or
2.1331-3.121+11,:6=385. Nor is it much more difficult with
this formula to sum the first 100 or 1000 squares. The same
method holds good for any powers of the natural numbers or for
expressions which are made up from such powers, so that it is
always possible to sum as many terms as we please of such series
by a formula. But our friend saw that it was not always easy to
proceed in the same way when the variable entered into the denom-
inator, as it was not always possible to find the sum of a numerical
series ; however, on following up this same analytical method, he
found in general, and published the result in the Acta Eruditorum,
that a sum-series could always be found, or the matter be reduced
to finding the sum of a number of fractional terms such as 1/z,
1/x%, 1/4%, etc, which at any rate, if the number of terms taken is
finite, can be summed, though hardly in a short way (as by a
formula) ; but if it is a question of an infinite number of terms,
then terms such as 1/x cannot be summed at all, because the total
of an infinite number of terms of such a series is an infinite quantity,
but that of an infinite number of terms such as 1/xx, 1/2% etc,
make a finite quantity, which nevertheless could not up till now
be summed, except by taking quadratures. So, in the year 1682,
in the month of February, he noted in the Acta Eruditorum that if
the numbers 1.3, 3.5, 5.7, 7.9, 9.11, etc., or 3, 15, 35, 63, 99, etc.,
are taken, and from them is formed the series of fractions

P te.
3 + 15 + 9 + etc.,
then the sum of this series continued to infinity is nothing else but
14, while, if every other fraction is left out, 14+ 145+ 149 + etc.

106 This, and other formulas of the same kind, had been given by Wallis

in connection with the formulas for the sums of the figurate numbers. Wallis
called these latter sums the “characters” of the series.
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expresses the magnitude of a semicircle of which the square on the
diameter is represented by 1.107
Thus, suppose x =1, 2, 3, etc.'® Then the general term of

1

101 1 .
st et et s T e+ 3

5t3

it is required to find the general term of the sum-series.

1
-§“+

Let us try whether it can have the form e/(bx +c), the rea-
soning being very simple; then we shall have

e e eb 1 .
brtc  bxtbtc bbrxt bbrt bt 2bcxtoo dxrt8xr+3

hence, equating coefficients in these two formulas, we have

b=2,eb=1,0r e=1%,
bb+2bc=8, 0or 4+4c=8, or c=1;

and finally we should have also bc+cc=3, which is the case.
Hence the general term of the sum-series is (1:2)/(2x+1) or
1/(4x +2), and these numbers of the form 4x + 2 are the doubles of
the odd numbers. Finally he gave a method for applying the differ-
ential calculus to numerical series when the variable entered into the
exponent, as in a geometrical progression, where, taking any radix
b the term is b*, where # stands for a natural number. The terms
of the differential series will be b#*1-b%, or b*(b~1); and from
this it is plain that the differential series of the given geometrical
series is also a geometrical series proportional to the given series.
Thus the sum of a geometrical series may be obtained.

But our young friend quickly observed that the differential
calculus could be employed with diagrams in an even more wonder-
fully simple manner than it was with numbers, because with dia-
grams the differences were not comparable with the things which
differed; and as often as they were connected together by addition
or subtraction, being incomparable with one another, the less van-
ished in comparison with the greater; and thus irrationals could be
differentiated no less easily than surds, and also, by the aid of
logarithms, so could exponentials. Moreover, he observed that the
infinitely small lines occurring in diagrams were nothing else but the

107 This sentence, in that it breaks the sense from the preceding sentence
to the one that follows, would appear to be an interpolated note.

108 There is an unimportant error here. The first value of # evidently
should be 0, and not 1.
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momentaneous differences of the variable lines. Also, in the same
way as quantities hitherto considered by analytical mathematicians
had their functions such as powers and roots, so also such quantities
as were variable had new functions, namely, differences. Also,
that as hitherto we had #, xx, 43, etc., y, yy, 93, etc., so now it was
possible to have dx, ddx, d*x, etc., dy, ddy, d*y, and so forth. In
the same way, that it was possible to express curves, which Des-
cartes had excluded as being “mechanical,” by equations of posi-
tion, and to apply the calculus to them and thus to free the mind
from a perpetual reference to diagrams. In the applications of the
differential calculus to geometry, differentiations of the first degree
were equivalent to nothing else but the finding of tangents, differ-
entiations of the second degree to the finding of osculating circles
(the use of which was introduced by our friend) ; and that it was
possible to go on in the same fashion. Nor were these things only of
service for tangents and quadratures, but for all kinds of problems
and theorems in whch the differences were intermingled with in-
tegral terms (as that brilliant mathematician Bernoulli called them),
such as are used in physico-mechanical problems.

Thus it follows generally that if any series of numbers or
lines of a figure have a property that depends on two, three or
more consecutive terms, it can be expressed by an equation involv-
ing differences of the first, second, third, or higher degree. More-
over, he discovered general theorems for any degree of the differ-
ences, just as we have had theorems of any degree, and he made
out the remarkable analogy between powers and differences pub-
lished in the Miscellania Berolinensia.

If his rival had known of these matters, he would not have
used dots to denote the degrees of the differences,!®® which are
useless for expressing the general degree of the differences, but
~ would have used the symbol d given by our friend or something
similar, for then d¢ can express the degree of the difference in
general. Besides everything which was once referred to figures,
can now be expressed by the calculus.

109 Why not? Newton’s dotted letters still form the best notation for a
certain type of problem, those which involve equations of motion in which the
independent variable is the time, such as central orbits. Probably Leibniz
would class the suffix notation as a variation of his own, but the D-operator
eclipses them all. For beginners, whether scholastic or historically such (like
the mathematicians that Barrow, Leibniz and Newton were endeavoring to
teach), the separate letter notation has most to recommend it on the score of
ease of comprehension; we find it even now used in partial differential equa-
tions,
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For V/ (dxdx+dydy)'*° is the element of the arc of a curve,
ydx is the element of its area; and from that it is immediately
evident that {ydx and [« dy are the complements of one another,
since d(xy) =« dy+ydx, or conversely, xy={xdy+(yds, how-
ever these figures vary from time to time; and from this, since
ryz= (xydz+ (rzdy+ fyzdx, three solids are also given that
are complementary, every two to the third. Nor is there any need
for him to have known those theorems which we deduced above
from the characteristic triangle; for example, the moment of a
curve about the axis is sufficiently expressed by (#V (dzdx +dydy ).
Also what Gregory St. Vincent has concerning ductus, what he or

A z

Fig. 5.

Pascal had concerning ungulae and cunei,!'! every one of these is
immediately deduced from a calculus such as this. Thus Leibniz
saw with delight those discoveries that he had applauded in others
obtained by himself, and thereupon he left off studying them at all
closely, because all of them were contained in a calculus such
as his.

For example, the moment of the figure AXYA (Fig. 5) about
the axis is 3 {yy d, the moment of the figure about the tangent at
the vertex is (#yds, the moment of the complementary trilinear
figure AZYA about the tangent at the vertex is § f#xdy. Now
these two last moments taken together yield the moment of the
circumscribed rectangle AXYZ about the tangent at the vertex, and
are complementary to one another.

However, the calculus also shows this without reference to
any figure, for 3d(xxy) = xy dx + 3xx dy; so that now there is need

110 Teibniz does not give us an opportunity of seeing how he would have
written the equivalent of drdxdx; whether as d#3 or da3 or (dx)3.

111 Dyuctus and ungulae have already been explamed in Notes 28, 29;
cuneus denotes a wedge-shaped solid; cf. “cuneiform.”
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for no greater number of the fine theorems of celebrated men for
Archimedean geometry, than at most those given by Euclid in his
Book II or elsewhere, for ordinary geometry.

It was good to find that thereafter the calculus of transcendent
quantities should reduce to ordinary quantities, and Huygens'*? was
especially pleased with this. Thus, if it is found that

YT
¥y X

then from this we get yy=2#® and this too from the nature of
logarithms combined with the differential calculus, the former also
being derived from the same calculus. For let =1y, then ma™*dx
=dy. Hence, dividing each side by equal things, we have

Again, from the equation, m logx =logy, we have

113
logx:logy=f%:f%’—.

By this the exponential calculus is rendered practicable as well.
For let y* =z, then xlogy=1logz drvlogy+xdy:y=dz:z.

In this way we free the exponents from the variable, or at
other times we may transpose the variable exponent with advantage
under the circumstances. Lastly, those things that were once held
in high esteem are thus made a mere child’s-play.

Now of all this calculus not the slightest trace existed in all
the writings of his rival before the principles of the calculus were

112 This is peculiar. The demonstration that follows was beyond the
powers of Leibniz in June, 1676 (see pp. 121, 122), probably so until Nov., 1676,
when he was in Holland, and possibly later still. Hence the result would have
been communicated to Huygens by letter, and there would be an answer from
Huygens. I have been so far unable to find such a letter.

113 This only proves the proportionality, enabling Leibniz to convert the
equation 2/dy/y=3/dx/x into 2 logy =3logx. It will hardly suffice as it .
stands to enable him to deal with such an equation as 2f/dy/y = 3/x dx; and it
is to be noted that Leibniz does not notice at all the constant of integration. Al-
though Barrow has in effect differentiated (and therefore also has the inverse
integral theorems corresponding thereto) both a logarithm and an exponential
in Lecture XII, App. III, Prob. 3, 4, yet these problems are in such an am-
biguous form that it may be doubted whether Barrow was himself quite clear
on what he had obtained. Hence this clear statement of Leibniz must be
considered as a great advance on Barrow.
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published by our friend ;!4 nor indeed anything at all that Huygens
or Barrow had not accomplished in the same way, in the cases where
they dealt with the same problems.

But how great was the extent of the assistance afforded by
the use of this calculus was candidly acknowledged by Huygens;
and this his opponents suppress as much as ever they can, and
straightway go on with other matters, not mentioning the real
differential calculus in the whole of their report. Instead, they
adhere to a large extent to infinite series, the method for which no
one denies that his rival brought out in advance of all others. For
those things which he said enigmatically, and explained at a much
later date, are all they talk about, namely, fluxions and fluents, i. e.,
finite quantities and their infinitely small elements; but as to how
one can be derived from the other they offer not the slightest sug-
gestion. Moreover, while he considers nascent or evanescent ratios,
leading straight away from the differential calculus to the method
of exhaustions, which is widely different from it (although it
certainly also has its own uses), he proceeds not by means of the
infinitely small, but by ordinary quantities, though these latter do
finally become the former.

Since therefore his opponents, neither from the Commercium
Epistolicum that they have published, nor from any other source,
brought forward the slightest bit of evidence whereby it might be
established that his rival used the differential calculus before it
was published by our friend; therefore all the accusations that were
brought against him by these persons may be treated with contempt
as beside the question. They have used the dodge of the petti-
fogging advocate!ls to divert the attention of the judges from the
matter on trial to other things, namely to infinite series. But even
in these they could bring forward nothing that could impugn the
honesty of our friend, for he plainly acknowledged the manner in
which he had made progress in them; and in truth in these also,
he finally attained to something higher and more general.

114 Almost seems to read as a counter-charge against Newton of stealing
Leibniz’s calculus. Note the tardy acknowledgement that Barrow has pre-
viously done all that Newton had given.

115 The whole effect that this Historia produces in my mind is that the
entire thing is calculated to the same end as the Commercium Epistolicum.
The pity of it is that Leibniz could have told such a straightforward tale, if
events had been related in strict chronological order, without any interpolations
of results that were derived, or notation that was perfected, later. A tale so
told would have proved once and for all how baseless were the accusations
%f the Commercium, and largely explained his denial of any obligations to

arrow.
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SUPPLEMENT.
Barrow, Lectiones Geometricae, Lect. XII, Prop. 1, 2, 3.
[Page 105, First Edition, 1670.]

General foreword. We will now proceed with the matter in hand; and,
in order that we may save time and words, it is to be observed everywhere in
what now follows that AB is some curved line, such as we shall draw, of which
the axis is AD; to this axis all the straight lines BD, CA, MF, NG are
applied perpendicular; the arc MN is indefinitely small; the straight line aB =
arc AB, the straight line au = arc AM, and w» =arc MN; also lines applied
to aB are perpendicular to it. On this understanding:
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Fig. 6. Fig. 7.

1. Let MP be perpendicular to the curve AB, and the lines KZL, a¢d such
that FZ = MP, u¢ = MF. Then the spaces afd, ADLK are equal.

For the triangles MRN, PFM are similar, MN: NR = PM: MF,

MN.MF = NR.PM;
that is, on substituting the equal quantities,
wr.up = FG.FZ, or rect. u0 = rect. FH.

But the space aBd only differs in the slightest degree from an infinite
number of rectangles such as #8, and the space ADLK is equivalent to an equal
number of rectangles such as FH. Hence the proposition follows.

2. Hence, if the curve AMB is rotated about the axis AD, the ratio of the
surface produced to the space ADLK is that of the circumference of a circle
lt{o its 'diameter; whence if the space ADLK is known, the said surface is

nown.

Some time ago I assigned the reason why this was so.

3. Hence, the surfaces of the sphere, both the spheroids, and the conoids
receive measurement. For if AD is the axis of the conic section, etc.

Nore. In the above figure, I have “lined in” the part of the dia-
gram (which serves for about ten theorems) especially used for the

first two theorems. If this is compared with Leibniz’s figure on
p. 15, further comment is needless.



Iv.

MANUSCRIPTS OF THE PERIOD 1673-1675.
§ 3*

The following notes, on certain MSS. which Gerhardt
does not give in full, are taken from G. 1848, p. 20 et seq.
(see also G. 1855, pp. 55 et seq.).

In a manuscript of August, 1673, bearing the title Methodus
nova mvestigandi Tangentes linearum curvarum ex datis applicatis,
vel contra Applicatis ex datis productis, reductis, tangentibus, per-
pendicularibus, secantibus, Leibniz begins at once with an attempt
to find a method that is applicable to any curve for the determination
of its tangent. “But if,” says Leibniz with regard to the classifica-
tion of curves which Descartes laid down as fundamental for his
method of tangents, “the figure is not geometrical — such as the
cycloid—it does not matter; for it will be treated as an example
of a geometrical curve, by supposing that there is a relation between
the straight lines and curves by which they are made known to us;
in this way, tangents can be drawn just as well to either geometrical
or ageometrical curves, as far as the nature of the figure allows.”
He considers the curve as a polygon with an infinite number of
sides, and here already he constructs what he calls the “Character-
istic Triangle,” whose sides are an infinitely small arc of the curve,
and the differences between the ordinates and between the abscissae;
this is similar to the triangle whose sides are the tangent, the sub-
tangent and the ordinate for the point of contact. In just the same
manner as used by Descartes, Leibniz seeks the tangent by means
of the subtangent; he denotes the infinitely small differences of the
abscissae by b, and verifies for the parabola, that his method works
out correctly, when the terms of the equation that contain the in-

* §8§ 3-10 inclusive appeared in The Monist for April, 1917.
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finitely small quantities are neglected. The omission of these terms,
however, does not appear to Leibniz to be a method to be relied
upon. In fact, he says: “It is not safe to reject multiples of the
infinitely small part'b, and other things; for it may happen that
through the compensation of these with others,* the equation may
come to a totally different condition.” So he secks to obtain the
determination of the subtangent in some other way. ‘“The whole
question is, how the applied lines can be found from the differences
of two applied lines,” are his own words. He then finds that the
solution of this problem reduces to the summation of a series, of
which the terms are the differences of consecutive abscissae.

At the end of the manuscript Leibniz proceeds to speak of the
inverse problem: “It is an important subject for investigation,
whether it is possible, by retracing our steps, to proceed from tan-
gents and other functions to ordinates. The matter will be most
accurately investigated by tables? of equations; in this way we may
find out in how many ways some one equation may be produced
from others, and from that, which of them should be chosen in any
case. This is, as it were, an analysis of the analysis itself, but if
that is done it forms the fundamental of human science, as far as
this kind of things is concerned.” Ultimately Leibniz obtains the
following result: “The two questions, the first that of finding the
description of the curve from its elements, the second that of find-
ing the figure from the given differences, both reduce to the same
thing. From this fact it can be taken that almost the whole of the
theory of the inverse method of tangents is reducible to quadra-
tures.”

According to this, Leibniz has in the middle of the year 1673
already attained to the knowledge that the direct and the so-called
inverse tangent-problem have an undoubted connection with one
another ; he has an idea that the latter may be capable of reduction
to a quadrature (i. e., to a summation).

Again, in a manuscript dated October 1674, i. e., fourteen
months later, which bears the title Schediasma de Methodo Tan-
gentium inverse ad circulum applicata, he is able to say for certain
that “the quadratures of all figures follow from the inverse method

. 11t is impossible to see, without a fuller knowledge of the context,whether
this refers to “compensation of errors,” or whether Leibniz is alluding to the
possibility of all the finite terms cancelling one another.

2 Leibniz comes back to this point later; see § 5.
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of tangents, and thus the whole science of sums and quadratures
can be reduced to analysis, a thing that nobody even had any hopes
of before.”

After Leibniz thus recognized the identity between the inverse
tangent-problem, of which the general solution had not been found
by Descartes, and the quadrature of curves, he applied himself to
the investigation of series, by the summation of which quadratures
were then obtained. In a very extensive discussion, bearing the
date of October, 1674, and the title Schediasma de serierum summis,
et seriebus quadraticibus, Leibniz starts from the series

and obtains the following general rule: “By calling the variable
ordinates x, and the variable abscissae y, and b the abscissa of the
greatest ordinate ¢, and d the abscissa of the least ordinate h,” are
Leibniz’s own words, “we have the following rules:

x? yw?  d%h
2w d%h x
2 =, e—h=w,
o w
Y= T2

yw =x in decreasing values, for in ascending or increasing values
yw = eb - 2.3

Leibniz then goes on to remark: “These rules are to be altered
slightly according as the series increase or decrease; also mention
of the least ordinate may be omitted, if it is always understood to
be the last ordinate; on the other hand, w can always be inserted
wherever mention is made of w. All series hitherto found are con-
tained in the one by means of these rules, except the series of
powers, which is to be obtained by taking differences.”

8 This, without either proof or figure, is a hopeless muddle; and yet it is
repeated word for word, without any addition or remark, in Gerhardts 1855
publication. Goodness Knows what the use of it was supposed to be in this
form! Unless Leibniz has omitted some length, which he has supposed to be
unity, the dimensions are all wrong.
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In the same essay, Leibniz makes use of a theorem, which he
has probably found to be general at an earlier date, namely:

“Since BC is to BD as WL to SW, there-
fore BCSW,* that is, the sum of every BC
[applied to AC], is equal to BDWL, that is,
the sum of every BD applied to the base ; more-
over, the sum of every BD applied to the base is
equal to half the square on the greatest BD. g
Further, it is evident that the sum of every WL
is equal to the greatest BD.”

Accordingly, Leibniz comes to the further
conclusion that the method of Descartes, which
uses a subsidiary equation with two equal roots, to solve the general
inverse-tangent problem, is unsatisfactory. In a manuscript of
January, 1675, Leibniz says: “Thus at last I am free from the un-
profitable hope of finding sums of series and quadratures of figures
by means of a pair of equal roots, and I have discovered the reason
why this argument cannot be used; this has worried me for quite
long enough.”®

No

(=

w
C

N/

§ 4

The manuscript that comes next in date is one that is
given in G. 1855. It really consists of three short notes,
(1) a theorem on moments, (2) a continuation of the idea
started at the end of the manuscript of August, 1673
(§ 3), namely the formation of tables of equations that
are derivable from certain standard equations, with the
appropriate substitutions for each case, (3) a return to
the consideration of moments.

This is the first appearance of the word “moment,” but
from the context it is evident that Leibniz has done some
considerable amount of work upon the idea before. If the
theorem that is first given is written in modern notation,

4 The sign " signifies multiplication.

5 Observe that as yet nothing has been said about the area of surfaces of
revolution or moments about the axis, although we should expect them to be
mentioned in connection with the figure that is given; for the next manuscript
shows that in October 1675, Leibniz has already done a considerable amount
of work on moments.
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it takes the form of an “integration by parts” and serves
to change the independent variable. Thus we have
fxy adx = [xzﬁ/]— jizdy;

and it is readily seen that if # can be expressed as a square
root of a simple function of y, as for the circle and the
conic sections, then the integral on the right-hand side
has no irrationality. This, I take it, is the connection
between this theorem and those which follow.

The proof is not so clear as it might be on account of
two errors, both I think errors of transcription or mis-
prints. The first a should be an #, and the second a should
be the preposition @ (= from); also, for modern readers
the figure might be improved by showing the variable lines
AB (=ux), BC (=y) as in the accompanying diagram.
The argument then is as follows:

Moment of BC(=y) about AD is #y, when it is applied
to AB for the summation; for this brings in the infinitesi-
mal breadth of the line.

A 1] = D

x ud
e ¢
I v
E
B8 < C

Moment of DC (=x«) about AD is #°/2, when applied
to AD, so as to include the infinitesimal breadth of the
line, and assuming that the line may be considered to be
condensed at its center of gravity. The theorem follows
at once.

Note the use of the sign rm as a symbol of equality,
which I have allowed to stand in the opening paragraph.
Leibniz adopts the ordinary sign two months later, or Ger-
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hardt makes the change,® so I have not thought it necessary
~ to adhere to it, but only to show it in the opening para-
graph.

The only remark that seems to be necessary with regard
to the second part of this manuscript is that Weissenborn'
argues from the continued allusion by Leibniz to the de-
sirability of forming tables of curves whose quadratures
may be derived from those of others, especially the conic
sections, (starting with the manuscript of November, 1675,
where Weissenborn states that it is first hinted), that
Leibniz had probably either seen or heard of the Cata-
logus curvarum ad conicas sectiones relatarum of Newton.
The point is that Weissenborn seems to have missed the
clear reference to the reduction of curves to those of the
second degree, in this manuscript of October, 1675. It
may of course be just possible that G. 1855, in which this
MS. appears, was not at Weissenborn’s hand at the time
that he wrote, for Weissenborn’s book was published in
1856.

With regard to the third part, it will be found in the
original Latin that Leibniz, after apparently starting with
perfect clearness, gets rather into a muddle toward the end.
This is however only apparent, being partly due to an in-
accurate figure, and partly to what I am convinced is an
error of transcription. This incorrect sentence makes Leib-
niz write apparently absolute nonsense; but if a correction
is made according to the suggestion in the footnote, and
reference is made to the corrected diagram that I have
added on the right of the figure of Leibniz, as given by
Gerhardt, then the proof given by Leibniz reads perfectly
smoothly and sensibly.

6 Gerhardt has a footnote to the effect that, as nearly as possible he has
retained the exact form of this and the manuscripts that immediately follow;

Exg;pg in the matter of this one sign I have adhered to the form given by
eibniz.

7 Weissenborn, Principien der hoheren Analysis, Halle, 1856.
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25 October, 1675.

Analysis Tetragonistica Ex Centrobarycis.

[Analytical quadrature by means of centers of gravity.]

Let any curve AEC be referred to a right angle BAD; let AB™
DCriag and let the last #Mb; also let BCTMADMy, and the last
yrne. Then it is plain that ‘

2 —z
PR

For, the moment of the space ABCEA about AD is made up

of rectangles contained by BC (=y) and AB (= #) ; also the moment

about AD of the space ADCEA, the com-
plement of the former is made up of the sum 0

2
of the squares on DC halved <= x2> ; and if

this moment is taken away from the whole
moment of the rectangle ABCD about AD, E

omn. yx to x =

. . b%
i.e., from ¢ into omn. x,° or from -5 there B c

will remain the moment of the space ABCEA. Hence the equation
that I gave is obtained; and, by rearranging it, it follows that
x? b

omn. yx to x + omn. = to y= ot (2)

In this way we obtain the quadrature of the two joined in one
in every case; and this is the fundamental theorem in the center of
gravity method.

Let the equation expressing the nature of the curve be
ay + b2t cxy+drtey+F=0,.0 e (3)
and suppose that xy=g2,--.-(4), theny = —i— cevenenao(5)

Substituting this value in equation (3), we have
9 b < fe .
2 +bx +£z+dx+x FF=0,00enr-. (6)

8 This a should be #.

9 Here, in the Latin, “ac 1n omn.#” should be “a ¢ in omn.x.”
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and, on removing the fractions,

az? +bat+ cx’z+dad+exz+f42=0. . ... .(7)
Again, let #?=2w ....(8); then, substituting this value in
equation (3), we have
ay*+2bw+cxy+dr+ey+f=0, . .. ... (9)
and therefore
2
_ —ay’—2bw—ey—f
= o td ) e (10)
=V2W; veiiii i (11)

and, squaring each side, we have'®

a?y? + 4aby*w + 2aey® + 2af y? + 4b*w? + 4bewy + 4bfw
+ €292 + 2fey + f? — 2c¢*y*w — 4edyw — 2d*w = 0. .. (12)

Now, if a curve is described according to equation (7), and
also another according to equation (12), I say that the quadrature
of the figure of the one will depend on the quadrature of the figure
of the other, and wice wversa.

If, however, in place of equation (3), we took another of
higher degree, the third say, we should again have two equations
in place of (7) and (12); and continuing in this manner, there is
no doubt that a certain definite progression of equations (7) and
(12) would be obtained, so that without calculation it could be
continued to infinity without much trouble. Moreover, from one
given equation to any curve, all others can be expressed by a general
form, and from these the most convenient can be selected.

If we are given the moment of any figure about any two
straight lines, and also the area of the figure, then we have its
center of gravity. Also, given the center of gravity of any figure
(or line) and its magnitude, then we have its moment about any
line whatever. So also, given the magnitude of a figure, and its
moments about any two given straight lines, we have its moment
about any straight line. Hence also we can get many quadratures
from a few given ones. Moreover, the moment of any figure about
any straight line can be expressed by a general calculation.

The moment divided by the magnitude gives the distance of the
center of gravity from the axis of libration.

101n view of this accurate bit of algebra, the faulty work in subsequent
manuscripts seems very unaccountable.
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Suppose then that there are two straight lines in a plane, given
in position, and let them either be parallel or meet, when produced,
in F. Suppose that the moment about BC is found to be equal to
ba?, and the moment about DE is found to be ca? Call the area
of the figure v; then the distance of the center of gravity from the

2
straight line BC, namely CG, is equal to ég——, and its distance from

2
the straight line DE, namely EH, is equal to 55;—; therefore CG is to

EH as b is to ¢, or they are in a given ratio.’?

GERHARDT’S DIAGRAM. SUGGESTED CORRECTION.

Now suppose that the straight line EH, remaining in the plane,
traverses the straight line DE, always being perpendicular to it, and
that the straight line CG traverses the straight line BC, always per-
pendicular to it, and that the end G leaves as it were its trace, the
straight line G(N), and the end H the straight HN. Then, if BC
and DE meet anywhere, G(N) and HN must also meet somewhere,
either within or without the angle at F. Let them meet at L; then
the angle HLG is equal to the angle EFC, and PLQ (supposing
that PL = EH and LQ = CG) will be the supplement of the angle
EFC between the two straight lines, and will thus be a given angle.
If then PQ) is joined, the triangle PQL is obtained, having a given
vertical angle, and the ratio of the sides forming the vertex, QL.: LP,
also given.

When then BL is taken, or (B) (L), of any length whatever,
since the angle BLP always remains the same, and in addition we
have BL to LP as (B) (L) to (L) (P), therefore also BL to (B) (L)
as LP to (L) (P) ; and this plainly happens when FL is also propor-

11 This proves the fundamental theorem given lower down, with regard

to a pair of parallel straight lines; and he now goes on to discuss the case
of non-parallel straight lines.
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tional to these, that is, when a straight line passes through F,L,
(L),......

Hence, since we are not here given several regions, it follows
that the locus is a straight line. Therefore, given the two moments
of a figure about two straight lines that are not parallel,......... ,
the area of the figure will be given, and also its center of gravity.'

Behold then the fundamental theorem on centers of gravity. If
two moments of the same figure about two parallel straight lines
are given, then the area of the figure is given, but not its center of
gravity.

Since it is the aim of the center of gravity method to find
dimensions from given moments, we have hence two general the-
orems:

If . we are given two moments of the same figure about two
straight lines, or axes of libration, that are parallel to one another,
then its magnitude is given; also when the moments about three
non-parallel straight lines are given. From this it is seen that a
method for finding elliptic and hyperbolic curves from given quad-
ratures of the circle and the hyperbola is evident.!®> But of this in
a special note.

§5.

The next manuscript to be considered is a continuation
of the preceding, and is dated the next day. Its character
is of the nature of disjointed notes, set down for further
consideration.

12 The passage in Gerhardt reads:

Datis ergo duobus momentis figurae ex duabus rectis non parallelis, dabi-
tur figurae momentis tribus axibus librationis, qui non sint omnes paralleli
inter se, dabitur figurae area, et centrum gravitatis.

For this T suggest:

Datis ergo fribus momentis figurae ex tribus rectis non parallelis, aliter
figurae momentis tribus axibus librationis, qui non sunt omnes paralleli inter
se.

"The passage would then read:

© Given three moments of a figure about three straight lines that are not
parallel, in other words, the moments of the figure about three axes of libra-
tion, which are not all parallel to one another, then the area of the figure will
be given and also the center of gravity.

+ If the alternative words are written down, one under the other, and not
too carefully, I think the suggested corrections will appear to be reasonable.

13 Apparently, here Leibniz is referring back to the theorem at the beginning
of the section.
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26 October, 1675.

Another tetragonistic analysis can be obtained by the aid of
curves. Thus, let the same curve be resolved into different elements,
accordiny as the ordinates are referred to different straight lines.
Hence alsy arise diverse plane figures, consisting of elements similar
to the giver curve; and since all of these are to be found from the
given dimemion of the curve, it follows that from the dimension
of any one oi the curves of this kind the rest are obtained.

In other vays it is possible to obtain curves that depend on
others, if to the given curve are added the ordinates of figures of
which the quadravire is either known or can be obtained from the
quadrature of the gven one.

Just as areas ar< more easily dealt with than curves, because
they can be cut up ant resolved in more ways, so solids are more
manageable than planes «nd surfaces in general. Therefore, when-
ever we divert the methol for investigating surfaces to the con-
sideration of solids, we disgver many new properties; and often
we may give demonstrations ‘or surfaces by means of solids when
they are with difficulty obtaited from the surfaces themselves.
Tschirnhaus observed in a dehght’ul manner that most of the proofs
given by Archimedes, such as the yuadrature of the parabola, and
dependent theorems on the sphere, -one, and cylinder, can be re-
duced to sections of rectilinear solids oily, and to a composition that
is easily seen and readily handled.

Various ways of describing row solids.

If from a point above a plane a rigid dwcending straight line
is moved round an area, of any shape whatevr, diverse kinds of
conical bodies are produced. Thus if the plane area is bounded
by the circumference of a circle, a right or scalene cone is produced.
Also if the figure used for the base, or the plane area, has a center—
an ellipse for example—then we get an elliptic cone, which is a right
cone if the given point is directly above the center, and if not it is
scalene. Another conic gives another elliptic cone.

If the rigid line drawn down from the point is circular or some
other curve, at one time it is so fixed to the point or pole that it has
fl‘e_ffdom ‘q move in one way only, say round an axis, in which case
it 1s necessary that the base should be a circle and that the fixed
pont or pole shoutd be directly over the center. At another time
it 's necessary that the rigid line should have freedom for other
mdions, such as an up and down motion, or some other motion,
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controlled by some straight line; and then it will always ascend
or descend when necessary, so that it ever touches the given plane
area by its rotation round the axis; and this is the second cass of
cones. A third class consists of those in which, besides the double
motion of a rotation round an axis and an up and down motion,
the curve alone, or the axis alone, or even both the cuve and the
axis, also perform other motions meanwhile, or even the point itself
moves.

Here is another consideration.

The moments of the differences about a straght line perpen-
dicular to the axis are equal to the complement of the sum of the
terms; and the moments of the terms are equa to the complement
of the sum of the sums, i. e.,

omn.xw M ult.”, omn.w, — oxf. oMN.w a9

az
Let xw ™ az, then w ™ —» and wr have

a7 az
omn.gz ™ ult.#, omn.—~ —omn.omn. pal
hence
x T
az az az 1 ;
omn.—- ™ ult.x omn. — —ennomn. —; (A
x x2 X » |
. . . . . .
inserting this value in the sreceding equation, N\
we have SEE

as as
e ult.x, omn.omn. —,

-2
omn.az ~ alt.x? omn. =

az az
-omn. ult.x, omn.— — omn.omn.— 3
X X

14T have given this equation, and those that immediately follow it, in
facsimile, in ocder to bring out the necessity that drove Leibniz to simplify
the notation. . .

We have here a very ithportant bit of work. Arguing in the first instance
from a single figure, Leibniz gives two general theorems in the form of moment
theorems. The first is obvious on completing the rectangle in his diagram,
and this is the one to which the given equation applies. In the other the whols, -
of which the two parts are the complements, is the moment of the compieted
rectangle; its equivalent is the equation

omn.xy = ult.x omn.y — omn. omn.y.
Now, although Leibniz does not give this equation, it is t .
ogniz,ed the fnalogy between this and the one that is given; for he lmmed_lta;iely
accepts the relation as a general analytical theorem thot he can use '?” }’“'
any reference to any figure whatever, and proceeds to develop it ulif,‘ pt:'.
This would therefore seem to be the point of departure that led to the Lib-
nizian calculus. -

vide«t. that he rec-
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and this can proceed in this manner indefinitely.

A . a - a a
gain, omn. x X omrn. x_2 — omn.omn. ;E N

a a
and omn.g M ult.x omn. — —omn. omn. = ;

the last theorem expresses the sum of logarithms in terms of the
known quadrature of the hyperbola.’®

The numbers that represent the abscissae I usually call ordinals,
because they express the order of the terms or ordinates. If to the
square of any ordinate of a figure whose quadrature can be found,
you add the square of a constant, the roots of the sum of the two
squares will represent the curve of the quadratrix. Now if these
roots of the sum of the two squares can also give an area that has
a known quadrature, then also the curve can be rectified.*®

15 Having freed the matter from any reference to figures, he is able to
take any value he pleases for the letters. He supposes that z=1, and thus
obtains the last pair of equations. He then considers # and w as the abscissa
and ordinate of the rectangular hyperbola #w =a (constant) ; hence omn.a/»
or omn. w is the area under the hyperbola between two given ordinates, and
therefore a logarithm; and thus omn,omn.a/x is the sum of logarithms, as
he states. See Note 60, p. 122.

16 There only seem to be two possible sources for this paragraph, (1)
original work on the part of Leibniz, and (2) from Barrow. For we know
that Neil’'s method was that of Wallis, and the method of Van Huraet used
an ordinate that was proportional to the quotient of the normal by the ordinate
in the original curve.

Now Barrow, in Lect. XII, § 20, has the following: “Take as you may
any right-angled trapezial area (of which you have sufficient knowledge),
bounded by two parallel straight lines AK, DL, a straight line AD, and any
line KL whatever; to this let another such area be so related that when any
straight line FH is drawn parallel to DL, cutting the lines AD, CE, KL in the
points F, G, H, and some determinate line Z is taken, the square on FH is
equal to the squares on FG and Z. Moreover, let the curve AIB be such that,

AC K 22K

B D ) EL B D EL

if the straight line GFI is produced to meet it, the rectangle contained by Z
and FI is equal to the space AFGC; then the rectangle contained by Z and
the curve AB . is equal to the space ADLK. The method is just the same,
even if the straight line AK is supposed to be infinite.”

This striking resemblance, backed by the fact that there seems to be no
connection between this theorem and the rest of the paper, that Leibniz gives
no attempt at a proof, (indeed I very much doubt whether I could have made
out his meaning from the original unless I had recognized Barrow’s theorem)
and that Leibniz gives 1675 as the date of his reading Barrow, almost forces
one to conclude that this is a note on a theorem (together with an original
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To describe a curve to represent a given progression.

From the square of a term of the progression, take away the
square of a constant quantity; if the figure that is the quadratrix
of the roots formed from the two squares is described, it will give
the curve required; it does not follow that a rectifiable curve can
be described.

The elements of the curve described can be expressed in many
different ways. Different methods of expressing the elements of
a curve may be compared with different methods of expressing
a figure having similar parts with it, according as it is referred in
different ways. Lastly, a solid having similar parts with a curve
- can thus far be expressed in many ways, and so also for a surface
or figure having similar parts with the curve.

§ o

Three days later, Leibniz considers the possibility of
being able to find the quadratrix in all cases, or when that
is impossible, some curve which will serve for the quadra-
trix very approximately. He makes an examination of the
difficulties that are likely to be met with and the means to
overcome them, and he seems to be satisfied that the method
can be made to do in all cases. But in the absence of an
example of the method he proposes to adopt, he seems only
to have been wasting his time. But this may be dismissed,
for it is not here that the importance of this essay lies; it
is altogether in what follows.

The rest of the essay is in the form of disjointed notes;
it is just the kind of thing that any one would write as
notes while reading the works of others. This is what I
take it to be; and the works he is considering are those of
deduction therefrom by himself) which Leibniz has come across in a book
that is lying before him, and that that book is Barrow’s. Against it, we have
the facts of the use of the word “quadratrix,” not in the sense that Barrow
uses it, namely as a special curve connected with the circle; that the quad-
ratrix 1s one of the special curves that Barrow considers in the five examples
he gives of the Differential Triangle method; and that another example of

this method is the differentiation of a trigonometrical function which seems
to be unknown to Leibniz.
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Descartes, Sluse, Gregory St. Vincent, James Gregory and
Barrow. Descartes he has already dismissed as imprac-
ticable in the manuscript of January, 1675; but there are
indications that the former’s method has still some influ-
ence. An incidental remark leads to the consideration of
the ductus of Gregory St. Vincent; but these too are soon
cast aside, truly because Leibniz does not quite grasp the
exact meaning of Gregory. He then either remembers
what he has seen in Barrow or refers to it again, for the
next thing he gives is some work in connection with which
he draws the characteristic triangle, which is here for the
first time, as far as these manuscripts go, the Barrow form
and not the Pascal form. He immediately obtains some-
thing important, namely,

omn. s
2

Noting that, in modern notation, / is dy, and a is dx,
and also, since a is also supposed to be unity, that the
final summation on the right-hand side is performed by
“applying the successive values to the axis of x4, while the
summation denoted by omn./ is a straightforward summa-
tion, it follows that the equivalent of the result obtained

/
= omn. omn. l;.

; o a
by Leibniz is 15y* = fy a’%ﬁ dx.

However, in attempting to put this theorem into words
as a general theorem he makes an error ; he quotes omn.l” as”
the “sum of the squares” instead of the “square of the
final y.” This I think is simply a slip on the part of Leib-
niz, and not, as suggested by Gerhardt and Weissenborn,
an indication that Leibniz confused omn.l” with omn.2, and
considered them as equivalent. Neither of these authori-
ties appears to have noticed the fact that when Leibniz
has invented the sign f (which he immediately proceeds
to do) he carefully makes the distinction between the
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equivalents to the square of a sum and the sum of the
squares. Thus we find that his equation is written as

72 — .
52. - ff 7L (note the vinculum)
a

while later in the essay we have [P to stand for the sum
of the cubes. Further, apart from this. I do not think that
any one can impute such confusion of ideas to Leibniz, if
it is noted that so far this is not the differential calculus,
but the calculus of differences, i. e., [ is still a very small
but finite line and not an infinitesimal; for in § 4 Leibniz
had squared a trinomial successfully, and must have known
that the sum of the squares could not be equal to the square
of the sum. Both these above-named authorities seem to
find some difficulty over the introduction of the letter g,
apparently haphazard. This difficulty becomes non-exis-
tent, if it is remembered that a is taken to be unity, and
the remarks made about dimensions by Leibniz are care-
fully considered; it will then be found that the a is in-
troduced to keep the equations homogeneous! Weissen-
born also remarks that Leibniz jots down the integral of
#? without giving a proof, and appears to be in doubt how
he reached it. If this is so, it confirms the opinion that I
have already formed, namely, that neither Gerhardt nor
Weissenborn tried to get to the bottom of these manu-
scripts, being content with simply “skimming the cream.”

I suggest that Barrow, Gregory St. Vincent, and even
Sluse, now join Descartes on the shelf or the floor, and that
the rest of the essay is all Leibniz. He writes the two
equations he has found, the equivalents to two theorems
obtained geometrically, notes the fact that these are true
for infinitely small differences (without, however, men-
tioning that they are only true in such a case), discards
diagrams, and proceeds analytically; that is, the y’s are
successive values of some function of x, where the values
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of x are in arithmetical progression; hence, substituting
x for [ in the equation

omn.x! = omn.] — omn.omn./,

and remembering that omn.x = #*/2, as he has proved,
we have

0 _ 22 22 N a3
omn. x —xz——omn.z—, or omu. x =3—-.

Again, below he gives fx® = Zﬁ correctly (although

there is an obvious slip or, as I think, a misprint of / for #):

this could have been obtained in the same way.
g _ a3 a3 g _ at
omn. #% = x2— — omn.3—, or omn. £% = 7

Similarly, Leibniz could have gone on indefinitely, and
thus obtained the integrals of all the powers of ». But
his brain is too active; as Weissenborn says, his soul is in
the throes of creation. He merely alludes in passing to the
inverse operation to f as being represented by d, which
he for some reason writes in the denominator (probably
erroneously because he has noted that f increases the di-
mensions) ; and then he harks back to the opening idea of
the essay, the obtaining of the quadratrix by means of
transformation of equations, an idea truly as hopeless as
the method of Descartes which he has discarded. Never-
theless, even then he obtains something remarkable, noth-
ing more or less than the inverse of the differentiation of a
product. This fundamental theorem is obtained geomet-
rically; the proof of the little theorem on which the final
result is founded is not given, neither is there a diagram.
It cannot therefore be supposed but that Leibniz is work-
ing from a diagram already drawn, and I suggest he was
referring to one of those theorems, with which he had
filled “hundreds of pages” between 1673 and 1675. The
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proof follows quite easily by the use of the characteristic
triangle, and is given in a footnote. This theorem is not
in Barrow, nor can I remember seeing it in Cavalieri;
I have not yet been able to procure a Gregory St. Vincent;
it may be in James Gregory.

The benefits of this discovery are lost’ as before, for
Leibniz once more alludes to the transformation of equa-
tions for the purpose of obtaining the quadratrix.

Summing the whole essay, we can say that in it is the
beginning of the Leibnizian analytical calculus.

29 October, 1675.

Analyseos Tetragonisticae pars secunda.
[Second part of analytical quadrature.]

I think that now at last we can give a method, by which the
analytical quadratrix may be found for any analytical figure, when-
ever that is possible ; and, when it can not be done, it will yet always
be possible that an analytical figure may be described, which will
act as the quadratrix as nearly as is required. This is how I look
at it:

Suppose the equation of the curve, of which the quadratrix
is required, is given, and that the unknowns in it are # and v. Let
the equation to the curve required be'”

v=b+cx+dy+ex®+fy +gyx+hy} +18* +mayy + yrr+ete.; (i)
let it be set in order for tangents, as follows:

—-dy-2fy? - gyx — 3hy® - 2mxy® — maty —etc.
=ct+2ext+ gyt + 3lx%t+ my*t + 2yxt+etc. ..., (ii)

17 This is either a misprint, v instead of O, or else Leibniz is in error.
For Slusius’s method there must be only two variables in the equation. In the
Phil, Trans. for 1672 (No. 90), Sluse gives his method thus:

If 5 + byt = 2qqv® — yyv3, then the equation must be written y5 |- by* -
yyv3—2qu3— yyv3; then multiply each term on the left-hand side by the
number of y’s in the term, and substitute ¢ in place of one y in each; similarly
multiply each term on the left- hand side by the exponent of v; the equation
obtained will give the value of ¢

The use of the letters v and y is to be noted in connectlon with Leibniz’s
use of the same letters; it does not seem at all necessary that Leibniz should
have seen Newton’s work, with this ready to the former’s hand, as a member
of the Royal Society.. I suggest that Sluse obtained his rule by the use of @
and e, as given in Barrow. Can Barrow’s words “usitatum a nobis (in the
midst 6f a passage written in the first person singular) have meant that the
method was common property to himself.and several other wmathematicians
that were contemporary with him? " This would explain a great deal.
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Now, t/y=a/ v; hence, if from the equation t/y=a/v, we elim-
inate ¢ and y by the help of equations (i) and (ii), that equation
should be produced which represents the figure that has to be
quadratured ; and by comparing the terms of the equation thus ob-
tained with the given equation, unless indeed there is no possibility
of comparing them, we shall obtain the quadrature.

But if an impossibility arises, it is then known that the given
analytical figure has no analytical quadratrix. But it is quite clear
that if we add to it such as will change it almost imperceptibly, then
a quadrable figure may be obtained, since this plainly produces an-
other equation. However, as an impossible case may arise, we must
consider the difficulties.

Say that the equation that is obtained is of infinite prolixity,
while the given one is finite. My answer is, that in comparing the
one with the other it will be seen how far at most the powers of
the unknowns in the indefinite equation can go. The retort may
be made, that it may happen that the indefinite equation obtained
may have more terms than the finite equation that is given and yet
may be reduced to it, for it may be divided by something else that
is either finite or indefinite. This difficulty hindered me for a long
time a year ago, but now I see that we should not be stopped by it.
For it may happen that from a certain determinate figure (whose
equation is not divisible by a rational) by the method of tangents
there may arise an ambiguous figure; for it is impossible to say
that, for any figure, there shall be only one tangent at any one point.
Hence the produced equation can neither be divided by a finite nor
by an indefinite quantity; for in truth indefinite figures, or those
whose ordinates are represented by an infinite equation, have some-
times these very ordinates finite, and these ought to satisfy the
equation. Notwithstanding that, I foresee another difficulty; for
indeed it seems that sometimes it may happen that all the roots of
the equation will not serve for the solution of the problem. Yet,
to tell the truth, I believe they will do so.

Now here is a difficulty that really is great. It may happen
that a finite equation may also be expressed as an indefinite one,
so that the equation obtained may really be the same as the given
equation although it does not appear to be. For example,

Vi=x/(1+x) =2 -2+ 2 - x* + 2°— %t etc.;

and in the same way others can be formed by various compositions
and divisions. This I confess is truly a difficult point, but it can be
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answered thus: If a figure has an analytical quadratrix of any sort,
in all cases it may be assumed to be an indefinite one; and then it
will not in all cases give an indefinite, but sometimes a finite, equa-
tion that is equivalent to the given equation. In the same way,
it is certain that the quadratrix of a given curve as it is usually
investigated, whenever there is one, will also be determined; and
that too given uniquely and not ambiguously, so that any that differs
from it, differs only in name. There is still one difficulty left; it
seems impossible to determine which is the end or first term of the
indefinite equation that is obtained ; for it may happen that the terms
of lower degree are cut out, and then it is divisible by y or »
or yx or powers of these; nor do I see that there is anything to
prevent this. There is the same difficulty. whether you start from
the lowest or the highest degree in the equation assumed to begin
with as indefinite. Suppose then that in the equation obtained this

T
I\ e
N\
™M G
B WA

-]

division is possible, then it is necessary that the constant term
should be absent, and also all those terms in which # alone or, if
you like, all the terms in which y alone is absent; and if we examine
this continuously we may light upon an impossibility.

In this general calculus then, we may take it as certain that
this difficulty is solved, and that such a division after the calcula-
tion can never happen; or if it is possible for it to happen, then
the terms will go out, one after the other, so that the equation can
be depressed and the comparison be made; and then it is to be seen
whether this difficulty cannot be overcome in general, and the com-
parison proceed as we proceed with the elimination. Perhaps if
the figure to be quadratured is reduced beforehand to its simplest
equation possible, impossibilities will the more readily be detected.
For then presumably the quadratrix must become more simplified.
In addition we have another source of assistance; for various cal-
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culations leading to the same thing, though obviously differing from
one another, can be contrived, from which equations are comparable.

Let BL=y, WL=/, BP=p, TB=t, GW =g, then y=omn.l.

Incidentally I may remark that there are composite numbers
that cannot be added or subtracted from one another by parts,
namely those denominated by powers, or by sub-powers or surds.
There are also other denominate numbers which cannot be multi-
plied together by parts, such as numbers representing sums; for
instance, omn./ cannot be multiplied by omn.p, nor can we have
y*=2omn. omn.pl. However, as such a multiplication may be im-
agined to occur under certain conditions, we must consider it as
follows:

We require the space that represents the product of all the
#’s into all the I’s; we cannot make use of the ductions of Gregory
St. Vincent, where figures are multiplied by figures, for by this
method one ordinate is not multiplied by all the others, but one into
one. You may say that if one ordinate is multiplied by all the rest
it will produce a sursolid space, namely, the sum of an infinite num-
ber of solids. For this difficulty I have found a remedy that is
really admirable. Let every ! be represented by an infinitely short
straight line WL, that is, we want the quadratrix line representing
omn. /; well, the line BL=omn. /; and if this is multiplied by every
p, each represented by a plane figure, then a solid is produced.
If all the I’s are straight lines and all the p’s are curves, a curved
surface is produced by a duction of the same sort. But these things
are all old; now, here is something new.

If upon WL, MG, or every single [, is superimposed the same
curve representing all the p’s, where the curve p is originally all in
the same plane and is carried along the curve AGL while its plane
always moves parallel to itself, then what we require will be ob-
tained. In place of a curve a plane may be carried along the curve
in the same manner, and a solid will be obtained, whereas by the
former method it was a curvilinear surface; and both for the sur-
face and for the solid the section always remains the same. It
remains to be seen whether a number of analytical surfaces cannot
be ascertained, as in the case of analytical lines; but this is men-
tioned only incidentally.

N.B. The curvilinear surface formed by the motion of a
curve parallel to itself along the curve will be equal to the cylinder
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of the curve under BL, the sum of all the /s but this is also men-
tioned incidentally.

omn./ L

To resume,-i— =2 =y, therefore p= Hence,

omn. /

omn. y f; does not mean the same thing as omn.y into omn./, nor yet

omn

y into omn.; for, since p= 4 l it means the same thing

as omn.l multiplied by that one / that corresponds with a certain

#; hence, omn.p=omn. 9213——11 Now I have otherwise proved
a
92 . omn.
omn.p= L 1. e, =——7'—; therefore we have a theorem that to me

seems admirable, and one that will be of great service to this new
calculus, namely,

omn. I’
2
that is, if all the I’s are multiplied by their last, and so on as often
as it can be done, the sum of all these products will be equal to half
the sum of the squares, of which the sides are the sum of the I's
or all the I’s. This is a very fine theorem, and one that is not at all
obvious.
Another theorem of the same kind is:

= omn. omn._li, whatever | may be;
a

omn.xl=x omn./ -omn.omn.l,

where [ is taken to be a term of a progression, and # is the number
which expresses the position or order of the !/ corresponding to it;
or x is the ordinal number and ! is the ordered thing.

N.B. In these calculations a law governing things of the same
kind can be noted; for, if omn. is prefixed to a number or ratio, or
to something indefinitely small, then a line is produced, also if to
a line, then a surface, or if to a surface, then a solid; and so on
to infinity for higher dimensions.

It will be useful to write f for omn., so that

f I=omn.l, or the sum of the /’s.

Thus, Jg_z = fj-l—é, and f 7= xjf-ffl-

From this it will appear that a law of things of the same kind
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should always be noted, as it is useful in obviating errors of cal-
culation.

N.B. If fIis given analytically, then [ is also given; therefore
if { f1is given, so also is /; but if / is given, (I is not given as well.
In all cases fr=x%/2.

N.B.. All these theorems are true for series in which the
differences of the terms bear to the terms themselves a ratio that is
less than any assignable quantity.

I

Now note that if the terms are affected, the sum is also

affected in the same way, such being a general rule; for example,
b b

multiplied by the maximum ordinal; but if it is not a constant term,
then it is impossible to deal with it, unless it can be reduced to terms
in /, or whenever it can be reduced to a common quantity, such as
an ordinal.

N.B. As often as in the tetragonistic equation, only one letter,
say I, varies, it can be considered to be a constant term, and {1 will
equal x. Also on this fundamental there depends the theorem:

£ [T -
fz‘ jzz,thatls,z._ x.

Hence, in the same way we can immediately solve innumerable
things like this; thus, we require to know what e is, where

A — (18)
[efivoa+ (0% [o=w
a

2122 % | , that is to say, if %is a constant term, it is to be

we have

e = %x-s— + baPx + f + xa.
For indeed (=, because ! is supposed to be equal®® to a for the
purpose of fhe calculation ; fé = x.

18 There is evidently a slip here; ! should be x.

19 This is an instance of the care which Leibniz takes; in the work above
! has been the difference for y, and a the difference for x; he is now integrating
an algebraical expression, and not considering a figure at all; hence /=g, and
¢ is equal to unity, and therefore [ =[8x —=adr =x! Thus what is gen-
erally considered to be a muddle turns out to be quite correct. The muddle
is not with Leibniz, it is with the transcriber. It is certain that these manu-
scripts want careful republishing from the originals; wpn’t some millionaire
pay to have them reproduced photographically in an edition de luxe?
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Also ‘c,f—:.—.cjf thatls-—c‘fl, fba2=flba.

Also it is understood that a is unity. These are sufficiently new and
notable, since they will lead to a new calculus.

I propose to return to former considerations.

Given [, and its relation to #, to find fix
This is to be obtained from the contrary calculus, that is to say,
suppose that (l=ya. Let I=ya/d; then just as { will increase, so d
will diminish the dimensions. But f means a sum, and d a differ-
ence. From the given y, we can always find y/d or [, that is, the
difference of the y’s. Hence one equation may be transformed into

the other; just as from the equation f‘ J 2= £_‘f f , we can ob-

3a
cS P
3a3d

2 2
N.B.f§3+ xa f"”“”. And similarly,

tain the equation ¢ [72_

But to return to what has been done above. We can investi-
gate (I in two ways; one, by summing y and seeking ya/d=l,
the other, by summing 2?/2a=y, or by summing V/2Zay=z, and
then 22/t=p=I=ya/d. Hence, if in an indefinite equation, we
eliminate y by substituting in its place 22/2a, and investigate the
t of this new equation which is indefinite like the first, and
then by the help of the value 2?/t=1, and after that by the help of
the new value of ¢, eliminate 2 from the indefinite equation con-
taining z and ¢, there will remain out of the (three) letters x,2,t,1,
the letter / alone; and again we ought to get an equation which
should be the same not only as the given one, but also the same as
the one that was obtained a little while ago. Hence, since we have
two indefinite equations, containing not only the principle quanti-
ties, but also arbitrary ones, yet not altogether unlike the former;
and these ought to be identical; it will appear to show whether
certain terms cannot be eliminated, whether it is not possible that a
comparison should be made, and other things of the sort; and, what

* This is, as I am going to show later, on p. 180, palpably a mere analytical
translation of Barrow’s geometry.
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is really the most important thing, which terms are really the
greatest and the least, or the number of terms of the equation.
Moreover, since in the similar triangles TBL, GWL, LBP, no
mention has yet been made of the abscissa »
or of the fixed point A, let us then suppose T
that through the fixed point A there is \
drawn an unlimited straight line AIQ, par- AL N N Q)
allel to LB, meeting the tangent LT in I;
and let AQ=BL; bisect Al in N; then I x
say that the sum of every QN will always
be equal to the triangle ABL, as can easily .
be shown by what I have said in another ®) W
place.?®
These considerations give once more a fresh fundamental theo-

rem for the calculus. For xv/2=y, where we suppose that BL=v
and QN=/, and y= fI;

=~ 1l---

B v T

but %1__:’;’;”, therefore Al = t—xv,
and Ql—o—Al=050420 ieqQi=,
Al xov o aézf X0 + v (a1
o] e} ML L L

Now, by the help of the equation (xv+tv)/2¢t=1, and of the former
equation y=xv/2, and taking once more the first indefinite or gen-
eral equation as a third, and eliminating first of all y, then ¢ by
means of the value found for the ratio of ¢ to # from the indefinite
equation containing # and v, and lastly v by the help of the equation
(#v+1tv) /2t=1, in which the principal quantities » and ! alone re-
main, as before; and this again should be identical with the given
equation.

Thus we have found three equations obtained in different ways,
which should all be identical with one another and with the given
equation; and these three are not only identical but should also
consist of the same letters and signs; and whether this is possible,
will immediately appear on being worked out analytically.

20 Since the triangles QLI, WL(L) are similar, QI.B(B) =QL.Q(Q),

hence omn.QI (applied to AB) — omn. QL (to AQ) = figure AQLA, hence
omn. (QI + QA) = rect. ABL.LQ =2AABL

21 Since ! is the difference for y, therefore 2! is the difference for xv;
this is shown to be (xv + tv)/t or x#(v/t) + v; and this is the equivalent to
(since v/t = dv/dx = dv)

d(2v) = xdv + v =xdv -+ vdx.
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§7.

The next manuscript is a further continuation of the
preceding, written two days later. In this Leibniz returns
to the idea that he has found so prolific, namely, the mo-
ments of a figure. It is to be observed that he speaks of
the method of breaking up an area into segments as some-
thing that he has already worked out; this will be remarked
upon in a note on a later manuscript, where it will help to
clear up a small difficulty. The accuracy of the rather in-
volved algebraical work is also a point to be noticed.

1 November, 1675.
Analyseos Tetragonisticae pars tertia.
[Third part of analytical quadrature.]
It was some time ago that I observed that, being given the
moment of a curve ABC, or of a curvilinear figure DABCE, about
two straight lines parallel to one an-

other, such as GF, LH (or MN, PQ), M b~ p
then the area of the figure could be ob- k

tained ; because the two moments dif- G F \

fered from one another by the cylinder i

of the figure, where the altitude was £ c

the distance between the parallels. ‘0 a \
Now, this is true of every pro- N Q

gression, whether of numbers or of
lines; that is, even if we do not use curvilinear figures but ordinated
polygons; in other words, where the differences between the terms
are not infinitely small. Suppose we have any such ordinated quan-
tity z and let the ordinal number be x, then

bomn.z ™ = omn.gx o— omn.zx +b

and this is evident by the calculus alone.
By this rule, can be found the sums of terms of an arithmetical
progression refolded reciprocally;** and this multiplication takes
22 The meaning of this is probably a series such as that considered by
Wallis. If a, a 4 d, a - 2d, etc. is the arithmetical progression, and !/, I—d,
1 —2d, etc. is the series reversed, then the series refolded reciprocally is al,

(a4 d) (I—d), (a4 2d) (I—2d), etc. It may however mean the sum of the
squares of the arithmetical progression. But the point is not very important.
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place when it is required to find the moment of the ordinates about
a straight line perpendicular to the axis. But if the moment about
any other straight line is required, there is the following general
rule:

From the center of gravity of each of the quantities of which
the moment is required, a perpendicular is drawn to the axis of
libration ; then the sum of the rectangles contained by the distances
or perpendiculars and the quantities will be equal to the moment
about the given straight line.

Hence, if the given straight line is the axis of equilibrium,
it immediately follows that the moment of the figure about the axis
is equal to the sum of the half-squares. Also when it is parallel
to that, it will differ from the foregoing by a known quantity.

Now, let us take another straight line: for the circle for instance,
let ABCD be a quadrant, vertex A, and center D ; let another straight
line be given, that is to say, let the prependicular DF be given and

Ml A
H%ﬁ
.
e

also EF where it meets the diameter, and thus also DE; let HB
be the general ordinate to the circle, and L its middle point; let
LM be drawn perpendicular to EF.
Then it is clear that the triangles EFD, EMN (where N is
the intersection of ML and AD), and LHN are similar.
y a2z Z x2

Let AD=x, then HL. = > = 3 . But, on account of

NH DF(=47).
HL ~ FE(=/)’

the similar triangles,

therefore
d 74
_ b a2t
NH = oF N2 _x o
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Hence, EN:DE(:e)—HD(=x)-NH<.—_12-f‘i’>=e_x_Zf.

2f
—— 72 }vi y a2
Now NL = yNH2 HL2=\/’__ 2,72 2 [T ;
VNHz Y 2\/f2+1
MN NH NH,EN
and BN =g °F MN = T thus we have
dy
e—x = -
dy zf d - dy
MN = = e—x— = ;
ny S |2z 2f
Al
@y
= \/d_z+_ g g\t
72
hence, since 6= w/f2 d2, we have 23
N 24 f2
NP by PHL ol x+fl
ML= =
T R

and this calculation is general for any curve, so long as # is always
taken as the abscissa and y as the ordinate.

Therefore the rectangle contained by ML and HB (=y), or the
moment of each ordinate taken with regard to the straight line EF,
or wa, will be equal to

ANFE=dEy —ay ;—[yz
\f24d?

Hence, omn.w will be obtained from the known values of
omn.x, omn.xy, and omn.y?; also, if any three of these four are
given, the fourth is also known.

Now, omn.xy will be equal to the moment of the figure about
the vertex, omn. y? will be equal to the moment of the figure about
the axis; hence, given three moments of the figure, that is to say,
the moments about two straight lines at right angles and any third,
the area is given.

This theorem, however, is less general than the one that was
given before, in the first part of this essay, where it does not matter

23 The accuracy of the algebra is noteworthy in comparison with the in-
accuracies that occur later. There is however a slip: e2 = f2 | d? and not
f2 —d2; this must be a slip and not a misprint, because it persists throughout.
It should be noted that the figure given by Gerhardt is careless in that LM is
made to pass through A



MANUSCRIPT DATED Nov. I, 1675. 87

what the angle between the straight lines may be, if only we are
given three moments; but it is always understood that they are in
the same plane. (Meanwhile, however, this theorem will suffice for
the curve of the primary hyperbola; for, if f is infinite, or if FE
and ED are parallel, dy + y2/2 = wa, as has already been proved.)

It is to be observed that by other calculation the area of a
quantity, whose center of gravity lies in a given plane (even though
the whole quantity does not), can be found from three given
moments about three straight lines in that plane. From this it is
to be seen whether the results obtained, when compared with one
another, will not produce something new.

If instead of the moment of a figure we require the moment
of all the arcs BP, PC, etc., the perpendiculars are to be drawn
from the points B, P, C, etc. only, to the straight line; for it will
make no difference whether they are drawn from the end or from
the middle of BP, for instance, for the difference between two such
perpendiculars is infinitely small. Hence, calling the element of
the curve z, the moment of the curve about the straight line EF is

dVfi-d*z—dxz+fyz
VEF

Most of the theorems of the geometry of indivisibles which
are to be found in the works of Cavalieri, Vincent, Wallis, Gregory
and Barrow, are immediately evident from the calculus; as, for
instance, that the perpendiculars to the axis are equal to the surface
or moment of the curve about the axis, for you find that a perpen-
dicular is equal to the rectangle contained by an element of the
curve and the ordinate. Therefore I do not set any value on such
theorems, or on those about applications of intercepts on the axis
(intercepted between the tangents and the ordinates) to the base.
Such theorems bring forth nothing new, except maybe they afford
formulas for the calculus.

But my theorem about the dimensions of the segments does
bring out a new thing, because the space whose dimension is sought
is broken up in a different way, that is to say, not only into ordi-
nates but into triangles. Also perhaps the Centrobaric method
yields something new. Maybe an easy method can be obtained by
which, without diagrams, those things which depend on a figure can
be derived by calculus. Gregory’s theorem, on ductions of two
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parabolas,® one under the other, equal to a cylinder, is immediately
evident by calculus; for the ordinate of a circle y=1/a%—2?%, that is,
the product of Va+ and Va—x; and in the same way, \/2av—*
=9, which gives y=V/v into \/2a—v; and these come to the same
thing. ‘

If the same ordinate y is multiplied by some quantity 2, and
afterward by the same z = some known or constant number b, the
difference between the sums produced will be equal to the cylinder
of the figure; so that

2y,,—2y+by ™ by.

Although this is evident in general by itself, yet applications of it
are not always evident. For instance, let

7T T8 T ax+ b, Naw—0
_— x2
then, multiplying by vaex + &, we have—m3 ----------- (A)
x2
and, multiplying by +ax &, we haveTI—;:Tﬂ Ceeaeie (B)
ax? b2x

but, since instead of , we can have x + ’

ax — b2 ax—5H?

which depends on the quadrature of the hyperbola; and thus if one
of the two things, (A) or (B), is given, then the other is also
known, supposing that the quadrature of the hyperbola is known.
Suppose that at the points C, D, E of a curve situated in any
plane there are imposed, perpendicular to the plane, the ordinates
of another curve FGH (not necessarily of the same constitution),
in such a manner that the middle point of each of these ordinates
lies in the plane; then it is evident that LC, MD, NE, multiplied
by FL, GM, HN, (that is, the lines imposed at C, D, E of the curve’
BCDE) or the rectangles FLG, GMD, HNE, or the duction of
these two planes into one another, will be equal to the moment of
every LC, MD, NE, etc. Hence, if PR is another axis, and the
interval between it and QL is the straight line PQ), the moment

24 Such theorems are also considered in Wallis, where it is shown that
the products for two equal parabolas are the squares on the ordinates of a
semicircle; the axes of the parabolas being coincident, but set in opposite sense.
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about PR differs from that about QL by the cylinder whose base
is LC, MD, etc., and whose height is PQ.%®

But, if we know the moment about the straight line PQ, and also
that about some other straight line in another position, as TS, of all

~

P ‘R
. g H
s
/T /Q LI M N
BNl

\ Y
the ordinates LF of the same figure, imposed at the points C, then we

shall have the cylinder corresponding to all the LF’s, as I will now
prove.

If we call QL, #, and CL, v, then TC= j;(x + ‘;:y + Z; and this

multiplied by 2z, where FL or MG=2, will give
S

— X - h B
XZ + Yz + 1z

Now xz is given, being the supposed moment about PQ, which is
the same whether the 2z’s are placed where they were in the lines
LF, MG, etc., or at the points C, D, E. Also yz is given, either
as the rectangle FLC or as the duction, by hypothesis. Hence, if in

25 This is obviously wrong; the base of the cylinder is the area made up
of FL, GM, HN, etc. The whole of this last passage proved to be difficult to
make out; Leibniz has not completed his figure, by showing the surface formed
by placing the ordinates FL, GM, HN with their middle points at C, D, E,
and the ordinates themselves perpendicular to the plane of the curve BCDE,
which figure I have added on the right-hand side of Leibniz’s figure. Even
when this is given, there is another difficulty added because as given by Ger-
hardt, CS is the tangent at D instead of the proper line, namely, the perpen-
dicular from C to TS; in addition through a misprint, this line is afterward
referred to as TC. Lastly, “the rectangle FLG” is a misprint for FLC, which
with Leibniz stands for FL.LC; this notation for a rectangle is, as far as I
can remember, used by Wallis and Cavalieri.

When all these errors are revised, what at first sight seemed to be rather
a muddle turns out to be an exceedingly neat idea in connection with the
moments of a figure, and their use to find an area, although mostly imprac-
ticable; it is evidently taken from Pascal (cf. onglets).

Note. The values £, g, a, h, are the lengths of TQ, QP, PT, and the per-
pendicular from Q on PT.
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addition there is given one moment of the ordinates imposed upon
the curve at the points C, D, E, and this is taken to be equal to

f

S xE+ § Y2+ hz, then we have hz or the cylinder required.

Hence, the curve BCDE is to be chosen such that the ordi-
nates of the given curve can be multiplied by different ordinates of
the former, drawn either to the axis QL or to the axis TS, with
some advantage of simplicity; and the curves that are suitable for
this are those that have several suitable axes, such as the circular
or primary hyperbola, which has a pair of asymptotes, or an axis
and a conjugate axis.

§8.

Much comment has been made on the fact that the date
of the next manuscript was originally “11 November
1675”; that the 5 had been altered to a 3, the ink being
of a darker shade; and that it is almost certain that this
alteration in date was made for some ulterior motive by
Leibniz himself. Hence, if he was capable of falsifying a
date in one particular case, then he is not to be trusted in
others,. ..., and so on. Instead of trying to explain away
this alteration, let us try to find an explanation-as to the
reason of its having been made by Leibniz; I offer the
following as at least feasible.

The essay starts with the words, “Jam superiorve anno
mihi proposueram questionem,. . ..” 1 suppose that by this
Leibniz intended: “A year or two ago, I set myself the
question,.....” This conforms with what follows; the
theorem that he sets down is one such as those that were
suggested to him by Huygens, and further theorems that
came to him as deductions during his first intercourse with
Huygens. Years later, I therefore suggest, Leibniz refers
to this manuscript, reads his own Latin, superiore anno, as
“in the above year,” gets no further, recognizes the theo-
rem by its figure as one of the Huygens-time batch, and
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“says to himself “1675? No, that’s wrong, should be 1673,”
and proceeds to alter it to what he remembers was the
date for the first consideration of the theorem.

N. B. Gerhardt himself has remarked on the darker
tint of the ink used in the alteration; hence my argument,
made at a later date.

The date 1675 is incontestable; for this composition is
quite glaringly a development of the work that has been
so efficiently started in that of November 1, 1675. Progress
is still delayed by the idea that has obsessed Leibniz up till
now, that of the transformation of equations, so as to be
able to eliminate more unknowns than the original number
of his equations warrant. He sets himself the problem:
“To determine the curve in which the distance between the
vertex and the foot of the normal is reciprocally propor-
tional to the ordinate,” i. e., the solution of the equation
x 4+ ydy/dx = a*/y, in modern notation. This is a very
unlucky choice for him: for I have it on the authority of
Prof. A. R. Forsyth that this is incapable of solution in
ordinary functions or even by a series in which the law
of the series is easily and simply expressible—at least he
confesses that he is unable to obtain such a solution, which
I take it comes to the same thing.

Leibniz professes to have found the solution and gives
(y* 4+ #*) (a®* — yx) = 2y*logy; and unfortunately this
false success but enhances the value in his eyes of the
method mentioned above. But from the equation given as
the solution we may draw an incontestable conclusion; for
in a previous problem Leibniz verifies his solution by the
method of tangents, i. e., by differentiation, although the
-~ method does not as yet convey that idea to him; but he does
not verify the solution in this case, because he is unable at
this date to differentiate the product y* log y.

The introduction of dx instead of x/d marks a further
advance, more important perhaps than the use of [y dy;
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for he still writes f#, considering dx to be constant and
equal to unity. He is beginning to grasp the infinitesimal
nature of his calculus, and that infinitesimals are not to be
neglected because of their intrinsic smallness, but because
of their smallness with respect to other quantities which
come into the same equations and are finite; but he is far
from being certain about it as yet, as is evidenced by the
discussion as to whether d(v/¢) = dv/d{ or not. How-
ever, the whole manuscript marks a distinct advance on
anything that has gone before. From now on he probably
discards geometry, and refers to Descartes, Gregory and
Barrow only for examples to show how much superior is
his method to theirs. I put his final reading of Barrow
down to the interval between the date of this manuscript,
11 November, 1675, and November, 1676; it is at this
time that he inserts his sign of integration in the margins
of the theorems. The next person that examines the orig-
inals of these manuscripts (I am convinced that this is
very necessary), should carefully see whether the ink used
for the note “nowi dudum” (which I have mentioned) is
the same as that used for the sign of integration; also the
other books that were used by Leibniz in his self-education
should be searchingly scrutinized for clues.

The last remark I have to make is one of astonishment
at the errors in the algebraical work which brings this
essay to a close, and to a less degree throughout the essay;
for we have seen the accuracy to which Leibniz has at-
tained in a previous manuscript; of course, a great deal of
erroneous work can be explained by supposing none too
careful transcription; but a re-examination of the whole of
the Leibnizian remains should include a careful scrutiny
on the point as to whether some of the extracts given by
Gerhardt are not the work of pupils of Leibniz, whose
writing would naturally be somewhat similar. Perhaps
too some of those early geometrical theorems might be un-
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earthed; and this would well reward the most painstaking
search. Nobody can assert that anything like an adequate
tale of the progress of the Leibnizian genius has so far
been told.

11 November, 1673.2¢

Methodi tangentium inversae exempla.

[Examples of the inverse method of tangents.]

A year or two ago I asked myself the question, what can be
considered one of the most difficult things in the whole of geometry,
or, in other words, what was there for which the ordinary methods
had contributed nothing profitable. To-day I found the answer
to it, and I now give the analysis of it.

Find the curve C(C), in which BP, the interval between the
ordinate BC and PC the normal to the curve, taken along the axis
AB(B), is reciprocally proportional to the ordinate BC.

Let AD(D) be another straight line perpendicular to the axis
AB(B), and let ordinates CD be

drawn to it, so that the abscissae AD T '
along the axis AD(D) are equal to D o S

the ordinates BC to the axis AB(B), A /

and the ordinates CD to the axis
AD(D) are equal to the abscissae AB

along the axis AB(B). Let us call B c
AD=BC=y, and AD=BC=x; also E

let BP=w and B(B) =2. Then it fol- (B )
lows from what I have proved in an- /

other place that P

yz yz 27
="~—, Or = —
Iwz 2 or wz 2([

2
But from the quadrature of a triangle it is evident thatz%—l,-_- ¥

and therefore wz=y.

26 See Cantor, III, p. 183; but neither Cantor nor Gerhardt appears to
offer any suggestion as to why this date should have been altered.

27 See foot of next page.
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Now, from the hypothesis, w=>5/y, for thus w and y will be
reciprocally proportional to one another. Hence we have

2
é7z-_—.y, and thus z=’%.

2
But fz=x, hence x = f};— ; and from the quadrature of the

o8 » o . .
parabola 7= 3540 hence, x = 30 and this is the required

equation expressing the relation between the ordinates y and the
abscissae # of the curve C(C), which was to be found. Therefore
we consider that the curve has been found and it is analytical; in
short, it is the cubical parabola whose vertex is A.

We will therefore see whether the truly remarkable theorem is
not true, namely, in the cubical parabola C(C), the intervals BP
between the normals to the curve, PC, and the ordinates to the
axis, BC, taken along the axis ABP, are reciprocally proportional
to the ordinates, BC.

, The truth of this is easily shown by the calculus of tangents.
For the equation to the cubical parabola is xc*=4®; taking c to be
the latus rectum, and supposing that for ¢* we put 3ba, or ¢=/3ba,
we have 3xba=1>.

Now, by Slusius’s method of tangents, we have t=%°/3ba,
where ¢ is put for BT, the interval along the axis between the
tangent and the ordinate.

y? ’y_z ba
But BP=w=7, and therefore w= y3 = — ; hence, the w’s
ba

and the ¥’s are reciprocally proportional as was to be proved.

27 This was obtained in the form omn.p = y2/2, previous to October, 1674,
from the Pascal form of the characteristic triangle; it is quoted as a known
theorem in the essay dated 29 October, 1675. See §§ 3,

It is probably at this date that he began to revise his ideas as to d dimin-
ishing the dimensions; being forced to reconsider them by the occurrence of
such equations as wz=2. It is seen in the next paragraph how careful he is
to keep his dimensions equal; for he introduces an apparently irrelevant
a(=1) for this purpose. It gradually dawns on him that neither f nor d alters

‘the dimensions, but that a “sum of lines” is really a sum of rectangles, on
“account of the fact that they are applied in a certain fixed way to an axis;
he is not quite certain of this however until well on in the next year, when
we find him using [dx y.
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The artifice of this analysis®® consisted in obtaining the abscissa
from the ordinate; and this idea was never previously thought of.
It is not a more difficult question either, if the curve is required
in which BP, the interval between the normals and the ordinates,
is reciprocally proportional to the abscissae AB. Indeed, w=a?/7;
but w=7%2/2; hence, we have

J’=\/ZJE or \/Zf“_z.
X

Now fw cannot be found except by the help of the logarithmic
curve.®® Hence, the figure that is required is that in which the
ordinates are in the subduplicate ratio of the logarithms of the
abscissae; and this curve is one of the transcendental curves.

Now, in truth, it is a much harder question®® if the curve, in
which AP is reciprocally proportional to the ordinate BC is re-
quired.

24
2 2
7 andw:gz)z,uz;

a2 52
For then x+w.—_7 and wz=2—; also fz:x,

r x'thus wx—-
[e) Z='(?, ) ;—-ﬁ)

P

24~ d y

If we suppose that the #’s are in arithmetical progression then
x/d =z will be constant, and we shall have

2 2 2 2
A I e
y

hence,

2d ¥ 2 ’
therefore
a? 2 2 2
—+ =) —ordx?4+y?="—
2 "2 Y

28 It is difficult to see exactly what Leibniz means by this statement; I
can only guess at substitution by means of the theorem wz =y, the equivalent
to the recognition of the fact thaty dy/dx.dx = ydy. The wording is however
impersonal, and may mean that he himself had never thought of the idea
before. Barrow has many such theorems for changing the variable.

29 Required y = f(#), such that ydy/dx = a2/x; the solution is y2 = 2a2
log,Ax. Weissenborn remarks on the omission of the a as being incorrect;
from Leibniz’s standpoint I cannot agree with him. Leibniz, from Mercator’s
work, connects a2/x with the ordinate of the equilateral hyperbola xy—=a?2,
and its integral with the quadrature of this curve, The omission of the a2
only alters the base of the logarithm, and Leibniz merely states that the solu-
tion is of a logarithmic nature without attempting to give it exactly.

30 How does he know until he has tried it? This rather combats the idea
that these were mere exercises; it gives this essay the appearance of being a
fair copy intended either for publication or for one of his correspondents. If
this were the case, the errors later in algebraical work are all the more un-
intelligible. The idea that Leibniz was a man who was accustomed to writing
down his thoughts as he went along does not appeal to me at all; this is the
method of the slow-working mind, rather than that of genius.
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but, if we join AC, A(C), then these are equal to V/#>+9?; and if
with center A and radius AC we describe an arc CE to cut the
straight line AE(C) in E, then E(C) will be the difference between
AC and A(C); that is, E(C) =e=d#*+9*

<. e=2a%/y.

If then it were allowable to assume that the y’s were also in
arithmetical progression, we should have what was required; yet
it seems that it does not make any difference even if the #’s have
been assumed to be in arithmetical progression. For if we do
assume that the #’s are in arithmetical progression, it follows that
the AD’s, or the 9’s are the reciprocals of the E(C)’s or the ¢’s.
Moreover, if they are so at any one time they are so at all times. Also,
the sums of an infinite number of reciprocal proportionals, no matter
what the progression may be of which they are taken as the recip-
rocal proportionals; for in this case there is not any consideration
of rectangles, where there is need of equal altitudes, but a sum of
lines is calculated, that of all the E(C)’s.?* Hence I see the difficulty
arises from the factthat the sum of everye, or every 2a®/y, or every
E(C), cannot be obtained, unless we know to what progression the
v’s belong. In this case, that information is not given; for it is
necessary that the #’s should be in arithmetical progression, and
hence that the y’s are not so.

On the other hand, if we suppose in the above equation,

¥ x a?

X + 2—(? v E = 3 )
that the y’s are in arithmetical progression, then we have
y _a >,
T or ay+ o =a’;

and, finally, by assigning the progression to neither x nor y, we have
in general

2
dy

2
xy+y E:ai’....................(A)

But we have not as yet really obtained anything. Let us
therefore consider it from the standpoint of “indivisibles”; let PCS
produced meet AD in S; then the sum of every AP applied to AB

31 This seems to be the root of the error into which he falls; he has not
yet perceived that the ¢’s have to be applied to some axis, before he can sum
them; and this is to a great extent due to the omission of the dx, taken as
constant and equal to unity. He is thus bound to fall back on the algebraical
summation of a series.
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is equal to the sum of every AS applied to AD;*2 or calling DS, v,
we have
dyfy+dyfv=dz {r+dx fw,
or dyfy+dyfv=dxfa’/y,
by the hypothesis of the question.
Now, if we take the y’s to be in arithmetical progression, we

have

y2 x2? 2 L -

> + - = 4x Logy.

But just above, making the same supposition that the y’s were in
arithmetical progression, we had

2 2
Y 9 ¥
X + — = d =——°'-‘;
y+ o =a ordx g
and now we have :
2+
a'x=-—:é.
2 Logy

Hence at length we obtain an equation, in which # and y alone

remain, and unshackled, namely

¥+t ot -yx=2y*Logy;
and this equation, since it is determinate, will give the required
locus. ’

This then is an exceedingly remarkable method, for the reason
that when it is not in our power to have as many equations as there
are unknowns, yet often we shall be able to obtain some more
equations, by the help of which we shall be able to eliminate certain
terms, as the term dx in this case, which alone stood in our way.
Either of the two equations, by itself, contained the whole nature
of the locus, although from neither of them could the solution be
derived, because so far easy means were lacking; yet the combina-
tion of the two equations gave the solution at once.

I see that the same thing could be otherwise obtained by
moments; and here there comes to my mind a new consideration
that is not altogether inelegant.

32 From the characteristic triangle, AS: AP =dx: dy.

38 This is of course nonsense. The error seems to arise from the dx being
placed outside the integral sign; thus he assumes that dx is constant, while, for
the integration, he also assumes that the dy is constant.

We cannot argue from this equation that Leibniz did not at this date
appreciate what an infinitesimal was, on account of the infinitesimal being
equated to a finite ratio; for since he is assuming that dy is an infinitely small
unit, dx really stands for dx/dy.
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In the attached figure, let BC=y, FC=dy; let S be the middle
point of FC; then it is evident that the moment of FC is the
rectangle contained by FC and BS,

i. e., the rectangle BFC; this follows
from the fact that it is equal to BFC+  Bj
SFC, and the latter can be neglected

)
as being infinitely small compared to ® ] (c\
the former.?* P )
Hence fydy=3%/2, or the mo- ° (F) «s»

ment of all the differences FC will be equal to the moment of the
last term, and ydy=d(y*/2), or y?*dy=1ydy?/2.
Now, just above, in equation (A), by making # arithmetical,
we had
2 2 2
Y _ 2 Y _ =Xy,
ya’z—a xy,ora’2 P

2
but this is the same thing as y dy; hence ydy= a—;ﬂ , and therefore

dy @ _x ——

y dy = f}«— R But we have already found that |y dy=5;
@ : -3 2a°

therefore y* + 22=2 ) £, as before; i. e., dx* +y -z
¥ i

From this there follows something to be noted about these equa-

tions, in which occur J and d, where one quantity, in this case for
instance the x, is taken to proceed arithmetically, namely, that we
cannot make a change, nor say that the value of x is found, thus,

x=2(a*/y) —d y*; for dy* cannot be understood unless the nature
of the progression of the y’s is determinate. But the progression of

the y’s, in order that it may be used for dy?, must be such that the
#’s are in arithmetical progression; hence the dy’s depend on the
#’s, and therefore the #’s cannot be found from the dy’s. For the
rest, by this artifice many excellent theorems with regard to curves
that are otherwise intractable will be capable of being investigated,
namely, by combining several equations of the same kind.

In order that we may be better trained for really very difficult
considerations of this kind, it will be a good thing to attempt just
one more, as for instance when the AP’s are reciprocally propor-
tional to the AB’s.

3¢ Note the advance in ideas suggested by the words “infinitely small

compared with the former.” Here, of course, the notation BFC is the usual
notation of the period for BF.FC, the rectangle contained by BF and FC.
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2 2

Here x +w=a—;, and zw=d%, and z=dx; and so we obtain
3 2 2
N &
w___2___2 hence +-—*2——;'
Tz dx’ X T

The solution of this is not now difficult; for if we suppose that
the #’s are arithmetical,®® we have

2 2 -
fx*yé:fgx_’ or 2 +y*=Logy.

Hence, V22 +y*=AC=v/2Log AD; and this is a simple enough
expression for the curve. In this however the AP’s are required
to be in arithmetical progression; but on the other hand, if the y’s
are taken to be in arithmetical progression, we have x+y/dr=a%/x;
and from this latter the nature of the curve is not easily obtained.

Let us see whether there can be a curve in which AC is always
equal to BP; in this case V42 +)’=w, and w=dy*/2dx. Let the
#’s be in arithmetical progression then (fV#*+y*=) f AC=y2%;
this, however, is not sufficient to describe the curve practically,
that is to say, by points following one another consecutively. When

#=1, let BC=(y); then V1+(3*)=(y"), or 1+(3*)=(3".

Whence (y) may be obtained; thus, from the equation
tyrid=141 we have (3)=Y5 or (=3,
y y - ’ y)= 2 y O Y _]/2'

Further, in the same way,

NI A1 3 = ()
AC A(C)
and thus again ((y)) can be found. By the help of this a third
AC can be found, and some sort of polygon can be found, which
is more and more like the curve that is required, in proportion as
the thing taken for unity is less and less.

35 Note in general that this is Leibniz’s equivalent of the modern phrase,
“integrate with respect to #.” (For the rest, see fig.,, p. 93.)

36 This I think is more likely to be a slip on the part of Leibniz, than a
misprint; for in the next line he has AD, which is the correct equivalent of y.
Further, AP varies inversely as #, hence the AP’s have to be in harmonical
progression, not arithmetical, otherwise x is not equal to #2/2. If on the
other hand, we assume three errors of transcription, and replace » for y, AB
for AD, AB for AP, the whole thing is correct with an arbitrary base.

37 It is hardly necessary to point out the error in the arithmetical solution
of the quadratic; nor is it important. It is however to be noted that if AC=19,

:be equation reduces to v2 =« (x -+ v), and the solution is a pair of straight
ines.
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That the #’s are in arithmetical progression signifies that the
motion (in describing it) along the axis AB is uniform. But
descriptions that suppose any motion to be uniform are not within
our power.*® For we cannot produce any uniform motion, except a -
continually interrupted one.

Let us now examine whether dx dy is the same thing as dxry,

and whether dx/dy is the same thing as dZ; it may be seen that
if y=22+bz, and r=cz+d; then d
dy=2*+2B2+p%, +bz+bB, —2*- bz,
and this becomes dy=2z+bg.
In the same way dx=+cf, and hence
dvdy=2z+b cp*.
But you get the same thing if you work out dxy in a straight-

. forward manner. For in each of the several factors there is a
separate destruction, the one not influencing the other; and it is

the same thing in the case of divisors.

Now let us see if there is any distinction when we seek the
sums of these things. We have fdv=x, (dy=y, and fdxy=xy.
Ef then we have an equation, dv dy=x say, then (dxdy= (x. But
fx=2"/2, hence xy=4?/2, or #/2=1y; and this satisfies the equation

%2 9

dx dy=x; for substituting for y its value, axdzirzx, or & =1,

which is known to be true.

In sums these results do not hold good; for (x (y is not the
same thing as fxy; the reason is that a difference is a single
quantity, while a sum is the aggregation of many quantities. The
sum of the differences is the latest term obtained. However, from
the sums of the factors we can find the sums of products, not indeed
as yet analytically, but by a certain method of reasoning; such as
Wallis has done in this class of thing, not by proving them, but by
a happy method of induction. Nevertheless to find proofs for them
would be a matter of great importance.

Suppose J ;J_/ to be the sum that is required. Let ,f z_y_ =w,

- dw dw .. [a’_w
then zy=dw, and y= S and [y= pab Similarly, [z= P

38 This is strongly reminiscent of Barrow, Lect. I (near the beginning)
and Lect. IIT (near the end).

39 Leibniz, as a logician, should have known better than to trust a single
example as a verification of an affirmative rule.

With regard to infinitesimals note the equation dxdy=ux!
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Suppose that fy is known,:v, and that fz is known, =v; then y

=dv— dw , and z= a’ll/- ,and dv —i. From this it would seem

ay

to follow that d % pr =, and therefore that - f Therefore f y

7%, which is obviously incorrect. “” Hence it follows that f;,f—;

cannot be equal to z.

14

What then can it be? We have to sum the difference for v
divided by the difference for y. That is, not every one of the
differences for, or the whole of, v is to be divided by each single
difference for the y; this is not so, I say, because each single one
of the first set is only divided by the single one of the other set
that corresponds to it, and not by all of them. Therefore

a’—l// is not the same as ;dl//’ or — z Will not then d‘% be something
different from — ? If it is the same, then also fa’g = fa’_v, that is
ay’ ¥ ay
v dv _/dv

- = | — ="—— which is absurd.

v ay Jay

Similarly, if we can suppose that dv¥ = dv d¥, then J dvy, or
4 =Jdv dy. Now oy =fdv fd!l/; hence, fdv a’tll=fa’v fdl//;

which is absurd.

Hence it appears that it is incorrect to say that dvdy is the

¥
that this was the case, and it appeared to be proved. This is a
difficult point. But now I see how this is to be settled.

If we have v and ¢, and they form some quantity, say ¢=v¢
or v/y, and if the values of z and ¢ are expressed as rationals in
terms of some one thing, for instance, in terms of the abscissa x,
then the calculus will always show that the same difference is pro-
duced, and that d¢ is the same as dvdy or dv/dy. But now I see

same thing as dwvy, or that Z—;=d2 ; although just above I stated

40 If Leibniz can see that this equality is “obviously incorrect,” what is the
use of the argument that has preceded this sentence; for the final result must
also be obviously incorrect.



102 THE EARLY MANUSCRIPTS OF LEIBNIZ.

the former can never happen, nor can it come to the latter by
separation of parts; for example,
x+B, N x+B,, -, x,x, becomes 2px,
which is quite a different thing from
r+B,-%, N x+p,—x which gives g2
Hence it must be concluded that dvy is not the same as dv dy, and

d. (41)
aZ is not the same as av

¥y ay’ T
Take an equation of the first degree, \
a+br+cy=0. Let DV=6, AB=x, BC=y, A Y

and TB=¢. Then, by making use of the
method of tangents,** we have bt=-cy, or
t=—cy/b. In the same way, 6=-bx/c. 8 w

Let WC=w, and WS=, then it is evi-
dent that ¢/y=8/w, and

therefore w= —p8 g;

—wc
b
Second degree. a+bx+cy+dx®+ey*+fyxr=0. Making use of
the method of tangents, we have

bt +2dxt +fyt=—cy—2ey* —fyx;

—cy—2ey*—fyx
b+2dx+fy

41 Leibniz here justifiably verifies the falsity of his supposition being a
general rule by a single breach of it. He uses v =y = «, and changes x into

x - B; thus,
d(xx) = (.a:+)3) (x+B)—zx = 2Bx
dx dv = (x+B—x)(x+B—x) = B2
Here we see the first idea of the method that is the same as that used by
Fermat and, afterward by Newton and Barrow; this consideration, whatever
the source, is that which leads him later to the substitution x -+ dx, y 4+ dy in
those cases in which Barrow uses a and e.

and in the same way, 8=

hence t= From this it is quite evident that ¢ can

42 “‘grdinando et accommodando,” literally setting in order and adapting.
It is to be remembered that Sluse gave only a rule, and not a demonstration
of the rule. Part of the rule was that, if the equation in two variables con-
tained terms containing both the variables, these terms had to be set down
on each side of the equation. Thus, for the equation y3 = bvv — yvv would
first of all be written
PBrywv=>bvv—3yvv........... ordinando (?)

then each term on the left is multiplied by the exponent of v, and each term on
the right by that of v, thus,

3y3 + yvv = 2bvv —2yvv......... accommodando (?)

and finally one y on the left, in each term, is changed into a ¢, where ¢ is
the subtangent measured along the y axis.
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always be divided by y (and 6 by x), and since w=gy/t, therefore
we have

_ Br+2dx+/y

Iy

—a—bx—dx®
ctey+/x

—w, c+Sx, Bb+ 2 dx,"c +/x,,, +f+2e N a+bx+dx’
—w, c+fx," —=Bb+2dx," —

—wc+/x,—Bb+ de
S+ 2e
Hence we have an equation in which there is no longer any
y;* and all figures that can be formed from this equation by a
variation of the letters that stand for the constants can be squared;
and also all others that by other methods can be shown to be con-
nected with it.

—wce+Jfx,"Bb+ 2 dx
S+ 2e ’

and y =

but from just above y= , hence we have

(43)

y=

§ 9.

In the manuscript that follows we must refrain from
being critical; for, as suggested by the opening remark,
it contains nothing more than random notes, jotted down
as they came into Leibniz’s mind, as materials for further
investigation. In the ten days that have intervened since
the date of the last MS., he has either had no spare time
for further work on the lines of this last manuscript, or
else he has found that he cannot proceed any further use-
fully until he has perfected the method he had in hand.
He therefore reverts to the method of breaking up the

43 This is hopelessly inaccurate; all except one error, namely, f-}-2e,
which should be Bf 4 2ew, may be put down to bad transcription. Even if
Leibniz’'s writing were execrable, the correct version of an ambiguous sign
(through bad writing) could easily have been settled, by working through the
a}l)gel;f(’iab Thus the first of the last pair of values, in Leibnizian symbols
should be

y=

—w, ¢+ fx, —B, b+2dx,, D c+ fx,, + Bf + 2ew, a + bx + dx?
—w, C+ fx; —ﬁ) b +2d1’,, e,
with a similar correction in the second value.

44 Even if Leibniz had worked out the correct result, and obtained what
he was trying for, namely, w/B in terms of », he would have got a very
lengthy quadratic, and the roots would be quite beyond his power to use at any
time. But he convinces himself that he can thus find the quadrature of any
conic, or figures that can be reduced to them.
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figure into triangles by means of a set of lines meeting in
a point, coupled with the ideas of the moment and the
center of gravity, in order to try to obtain further general
theorems for analytical use. In this way, he again comes
across the differentiation of a product in the form of an
“integration by parts”; but he does not recognize in it the
differentiation of a product, for he says that as he has
obtained this before he can get nothing new from it. He
is still wasting his energies over the idea of obtaining
dy/dx as an explicit function of #, for the purposes of
mtegration or quadratures. The fact that he can use the
method of Slusius as an unproved rule seems to have hid-
den from him the necessity of pushing on his investigations
with regard to the laws of differentiation, or the direct
tangent method.

21 November 1675.

Pro methodo tangentium inversa et aliis tetragomisticis spe-
cimina et inventa. Trigonometria indivisibilium. Aequa-
tiones inadaequatae. ordinatae convergentes. Usus singu-
laris Centri gravitatis.

[Examples and discoveries by means of the inverse method of
tangents and other quadratures. Trigonometry of indivi-
sibles. Inadequate equations. Converging ordinates. Spe-
cial use of the Center of Gravity.]

Subject-matter for a new consideration of the Center of Grav-
ity method, as follows:

A segment AECD having been broken up into infinite tri-
angles, AEC, ACF, etc,, let the center of gravity of each of these
triangles be found; this is a simple matter, for the center of gravity
is always distant from the base a third of the altitude. Then, since
the path of the center of gravity multiplied by the area of the
triangle is equal to the solid formed by its rotation, and also since
the products of the AH’s and the infinitesimal parts of the axis are
twice the areas of the triangle, also it is plain that the AG’s multi-
plied by the distances of the centers of gravity of the triangles AEC
from the axis are equal to the moment of the segment about the
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axis; by the help of this idea a number of things can be at once
obtained in two ways: first, by taking some general figure and mak-
ing a general calculation, and then so expressing it that the center
of gravity can be easily found ; in this way
we may obtain the moments of spaces
which would be a matter of difficulty
otherwise, if they were investigated by the
ordinary method of ordinates. Secondly,
on the other hand, if figures of which the
moments are easily obtained in the ordi-
nary way are treated by this method, we
shall arrive at certain very difficult curves,
the dimensions of which can always be de-
duced from some that are easier. Here

then we have a remarkable rule, by the
help of which useful properties can always § D
be obtained from any method however \

complicated. It is often useful when prob-
lems arise that we know are naturally
simple, and from other reasons are soluble; for thus many notable
cases are discovered. See what Tschirnhaus noted about the Has-
tarian line.

In irregular problems, such as cannot be treated in a straight-
forward manner or reduced to an equation that is sufficiently de-
terminate, because, say, something has to be done inversely, it is
useful to compare several ways with one another, of which the
results should be identical. This seems to be

useful for the inverse tangent method. Here T
is a case in pomt A
The figure, in which BP and AT are re-
ciprocally proportional, is required. B c
Let TB=¢t, then AT=t-
and BP=a?/(t-x).
If this is multiplied by ¢, we have P

COTBP=ta*/(t-x) =a*+a%x/(t—x) =y
hence, ta® =ty? - xy?,
or t=xy*/(a*-9?);*® and therefore t/x=9%/(a*-¥?), or all the s
together equal the moment about the vertex of every y?/(a®-y?).

48 There is a mistake in sign; a2 —y2 should be y2 —a?; hence the work
that follows is also wrong.
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But from other reasons, all the TP’s applied to the axis are
equal to the TC’s applied to the curve.

By _Ba’—y’
Now t/y=B/w, and therefore w= ; V’x xy
v =Z

But fw=y, therefore

f@:y.....................(A)

xy
53 _

Further, wx='3ay Y and ,fwx=yx—fy,3,

=3
hence, f B-"—y—JL =yx— fYBe i (B)

53

Also w=dy, dy= g%, and therefore

x _,3;5—}/_2=J}ﬁ+fﬁa~2_7.
V= dy=w ¥

Now if we suppose that the y’s are in arithmetical progression,
then w=dy is constant and B is variable;

2 2

a —
fyB+ —yy e _aB

hence, B= — dBli—P="E
aE—9 ¥y v

e’ -
But from equation (B), ,B—yy— +By=dyx

. a?
hence, B " =dyx.
We have thus obtained two equations that are mutually inde-
dx yx (46)
endent, the first e e eeeeeeeaas 1
P dy aty,a—y )
- 2
and the second dyx= d—?—‘-’-. ......... e (2)

46 Although the variables are separable, Leibniz does not recognize the fact
that he can make use of this. For later he states that the solution of a prob-
lem cannot be obtained from a single equation. In this case we have

dx y dy dv .

= - — 2 e g2 — —+ 92

P 7—a’ 2),1f:y a2 = = 72,
Supposing this substitution to have been effected, Leibniz would have concluded
that # = v, and would have stated that he had solved the problem.

But here again he has made an unfortunate choice, for the origin (A)
cannot fall on any of the curves Cx = v or C#2 = y2 = = a2, which is the gen-
eral solution of the equation. Hence the problem is impossible.
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Let us seek to obtain others in addition, such as
ftdy=fydx.
Now this furnishes us with nothing new; but ftw+ (rw=xy

or tdy+xdy=dry, and t= d—xy; hence the latter = d—xtfﬂ,
dy dy
Therefore dx y=dxy - dy.

Now this is a really noteworthy theorem and a general one
for all curves. But nothing new can be deduced from it, because
we had already obtained it.

However, from another principle we shall obtain a new theo-
rem; for it is known that the sum of every BP=BC(C?/2; that is to

2
say, BP= 24— /= By _ dx vy, and therefore
t—x w dy
2 o
BP=— 2% _dy

dxy—dyx 2
We therefore have two equations, in which d# occurs, namely,
the first and the third; by the help of these, by eliminating dx, we
shall have an equation in which only one of the unknowns remains

shackled; thus from equation (1), we have dr= Zy yy2 , and now

from equation (3), we get dxydy*—dydy*r=2a*dy. Hence,
2a2dy +dy a’y x

y dy

We have therefore an equation between the two values of dx,
in which only the ¥ remains shackled. From this, by assuming
the ¥’s to be in arithmetical progression, that is that dy=g8 a con-
stant, and dy?=2, and 2=22/2=42; 2=V2y=dy**" Thus we have
obtained what was required.

We have here a most elegant example of the way in which
problems on the inverse method of tangents are solved, or rather
are reduced to quadratures. That is to say that the result is obtained
by combining, if possible, several different equations, so as to leave
one only of the unknowns in the tetragonistic shackle. This can
be done by summing ordinates in various ways, or on the other
hand, instead of ordinates, converging or other lines.

dx =

47 This is quite unintelligible to me as it stands; query, is it an accurate
transcription?
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Note. If, instead of » or y, some other straight line can be
found, either one that is oblique, or one of a number converging to
the same point, by the employment of which one only of the un-
knowns is left in bonds, it may be employed with safety. Take
for instance the case of finding the relation for the AP’s; here the
sum of AP’s applied to the axis is half the square on AC. When-
ever the formula for the one unknown that is left in shackles is
such that the unknown is not contained in an irrational form or as
a denominator,*® the problems can always be solved completely;
for it may be reduced to a quadrature, which we are able to work
out; the same thing happens in the case of simple irrationals or
denominators. But in complex cases, it may happen that we obtain
a quadrature that we are unable to do. Yet, whatever it may come
to, when we have reduced the problem to a quadrature, it is always
possible to describe the curve by a geometrical motion; and this is
perfectly within our power, and does not depend on the curve in
question. Further, this method will exhibit the mutual dependence
of quadratures upon one another, and will smooth the way to the
method of solving quadratures. Meanwhile I confess that it may
happen that there may be need for a very great number of inade-
quate equations (for so I call them, when there is need for many
to solve the problem, although each alone would suffice provided
it could be worked out by itself), in order to completely free one of
the unknowns from its shackles. For, unfortunately, a solution
cannot be obtained from a single equation, unless one of the terms
is free from shackles; and if this term appears oftener, then not
unless it is freed at least once. Thus there may be a great number
of inadequate equations to be found; and we have to examine
which of them are in some way independent of the others, i. e,
such as cannot be derived from one another by a simple manipula-
tion; for instance, the sum of all the AP’s and the sum of all the
AE’s.

A new kind of Trigonometry of indivisibles, by the help of
ordinates that are not parallel but converge.

Let B be a fixed point ; let BDC be a very narrow triangle stand-
ing upon a curve; let DE be the perpendicular to BC; from the point

48 This is tantamount to a confession by Leibniz that he cannot explicitly
integrate fa?/y, although he knows that it is logarithmic or reduces to the area
under the hyperbola; for he has given this in the MS. for Nov. 11.
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B let BA, perpendicular to BC or parallel to DE, be drawn to meet
the tangent AHDC, and let BH be the perpendicular to the tangent
DC produced.

Then the triangles CED, CHB, BHA
are similar ; hence we have

BH/CE=HA/DE=BA/CD, B

and therefore BH, DE=CE, HA,

and BH, CD=CE, BH.
Hence it follows that the sum-of the tri-
angles or the area of the figure is equal to F
the products of the AB’s into the CE’s, or
the differences of the ED’s, and lastly

AH, CD=DE, BH.*

Further, CH/CE=HB/DE=CB/CD; ©
hence, again, CH, DE=CE, HB, and HB, CD=DE, CB; i. e, the
area of the triangle, as is in itself evident, is equal to itself. Lastly,
CH, CD=CE, CB; and this last result seems to be worth noting for
the case of a Trochoid.

For, if by the rolling of a curve DC on a fixed plane CA, a
trochoid curve is described by the point B fixed in DC, and it is
given that the ordinate of the trochoid drawn to the fixed plane CA
is BH, then the sum of the intercepts CH applied to DC will be equal
to the sum of the CB’s applied to their own differences. Now if
any ordinates are applied to their own differences, the same thing
is always produced as in the case where we try to find the moment
of the differences about the axis, which is the same as the moment
when we take the sum of each, or the maxi-
mum ordinate, into the distance of its cen-
ter of gravity from the axis, i. e., its middle
point, that is to say into half itself. Finally
this is equal to half the square on the maxi-
mum ordinate. Therefore we can always
obtain the sum of all the rectangles BC,
CE, which is always equal to half the square on BC, or to the sum
of all the BP’s applied to the axis in F, where CP is the normal to
the curve DC.

49 There are several errors in the letters in this paragraph, which are
probably due to transcription; thus, an E for a (? badly written) B, an H
for an A, etc., would be quite an easily-imagined error, provided the work was
not verified during transcription.
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§ 10.

Leibniz now directs his attention to the direct method
of tangents, and proceeds to generalize the methods of
Descartes. Is it only a coincidence that Barrow uses this
method regularly, the curve that he is especially partial to
being the rectangular hyperbola? Weissenborn suggests
the same coincidence occurs with respect to the method of
Newton, who uses analytical approximations; but if there
is anything in either of these suggestions. I think that the
Barrovian idea, which is purely for the construction of
tangents, is much nearer to that of Leibniz in this manu-
script than is the Newtonian.

However this may be, Leibniz is at last beginning to
consider the point as to the method by which the principle
of Sluse is obtained. He ascribes it to a development of the
method of Descartes; but in this connection I cannot get
out of my head the suggestion raised by Barrow’s use of
the first person plural, “frequently used by us,” in the
midst of a passage that is written, contrary to his usual
custom, in the first person singular throughout, where he
describes the differential triangle and the “a and ¢” method.
I consider that Sluse has enunciated a working rule for
tangents, which he has generalized by observation of the
results obtained by the use of the “a and ¢” method; and
that this method had been circulated by Barrow some time
before the publication of the Lectiones Geometricae, al-
though I confess that I have not found any record of this,
nor any distinct evidence of a correspondence between
Barrow and Sluse; but there is more than a suggestion of
this in the fact that Sluse’s article was published in the
Phil. Trans. for 1672.

It seems more than strange to me that there should be
such a prolific crop of differential calculus methods within
a couple of years of the work of Barrow in all sorts of
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places, raised by many different people, and that none of
them alludes to the general seed-merchant, as I consider
Barrow to have been.

. 22 Nov. 1675.

Methodi tangentium directae compendium calculi, dum jam
inventis aliarum curvarum tangentibus utimur. Quaedam
et de inversa methodo.

[Compendium of the calculus of the direct method of tangents,
together with its use for finding tangents to other curves.
Also some observations on the inverse method.]

In that which I wrote on Nov. 21, I noted down those things
which came to my mind concerning the method of tangents. Re-
turning to the subject, let ACCR and QCCS be two curves that cut
one another in one, two, or more points C,C; let AB(B) be the
axis; let AB=x be the ordinates, and
BC=y the abscissae; then we shall have

two equations to the two lines, each in T

terms of these two principal unknowns. A v AN

Now if these two equations have equal B

roots, or the equations have equal values,

then the lines will touch one another. In-

stead of the line QCCS, Descartes chooses  (B) < 5
the arc of a circle VCCD, whose center

is P, so that PC is the least of all the lines P D \R

that can be drawn from the point P. It
will come to the same thing, and often
more simply, if we take not the arc of a circle but the tangent line
TC(C), that is the greatest of all those that can be drawn from a
given point T to the curve.

Let TA=b, AE=e¢, be assumed as given; required to find AB,
BC. The two equations are, the one for the curve AC(C), namely,
ax®+cy? +etc. =0,
and the other to the straight line TC(C) which, on account of the

relation TA/AE=TB/BC, will be b/e= (b = x)/y

or £x=(b/e)y-b or y== (e/b)x+e.
Thus the value of either one or other of the unknowns can always
be obtained explicitly, and thus can be worked out immediately
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without raising the degree of the equation of the given curve
AC(C); and then at once we shall obtain an equation giving the
unknown that alone remains, so that we may determine the condition
for equal roots. Doubtless this is the principle of Sluse’s method.
If however the arc of the circle whose center is P is used,
following Descartes, then the new equation, for the circle, will be
as follows: let the radius PC=s, and PB=v-x, and we have
s?=92+22+ 42~ 20vx, Hence it is clear that we have the choice of
either a circle or a straight line; and when, in the equation to the
given curve, only an even power of y appears (as can always be
made to happen in the case of the conics), then it will be more con-
venient to use equations to circles; for thus, by the help of the two
values of y?%, the unknown # can be immediately worked out; but,
in general for all equations to curves expressed by a rational rela-
tion, the method of the straight line may be usefully employed.
Hence I go on to say that not only can a straight line or a
circle, but any curve you please, chosen at random, be taken, so
long as the method for drawing tangents to the assumed curve is
known; for thus, by the help of it, the equations for the tangents
to the given curve can be found. The employment of this method
will yield elegant geometrical results that are remarkable for the
manner in which long calculation is either avoided or shortened,
and also the demonstrations and constructions. For in this way
we proceed from easy curves to more difficult cases, and an equa-
tion to a curve being supposed known, it is always possible to choose
an equation to some other curve whose tangents are known, by the
help of which one of the unknowns can be worked out very easily.
Thus, if it is given that hy*+y*=ca®+da?+ex+f is the equa-
tion to a curve of which the tangents are required, assume a curve
of which the equation is Ay*+3y?*=gx+q, for that of which the
tangents are already known; eliminating y, we have an equation
such as gr+q=cx*+dx*+ex+f. This can be determined for two
equal roots, either by Descartes’s method of comparisons, or Hudde’s
by means of an arithmetical progression; and thus by working out
the value of «, the value of either g or ¢ may be found; and one of
the two letters g or g can be chosen arbitrarily.®® Hence, a way of
describing that other curve that touches the given curve is obtained ;
now, when this is described, let the tangent be drawn at the point
which is common to it and the proposed curve, which tangents we

.80 The method of Hudde appears to be similar in principle to that of Sluse,
while that of Descartes was the construction of the derived function by assum-
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have supposed to be already known; then this tangent will touch
the given curve.

I think that, in general, the calculation will be possible by this
method of assuming a second curve, as we have done in this case,
which evidently works out one of the unknowns. Hence I fully
believe that we shall derive an elegant calculus for a new rule of
tangents, which in addition may be better than that of Sluse, in that
it evidently works out immediately one of the two unknowns, a thing
that the method of Sluse did not do. Now this very general and
extensive power of assuming any curve at will makes it possible,
I am almost sure, to reduce any problem to the inverse method of
tangents or to quadratures. Indeed let any property of the tan-
gents to a curve be given, and let the relation between the ordinates
and the abscissae be required. Then an equation can be derived,
which will contain the principal unknowns, #, y, and always two
others as incidentals, such as s and v, or b and e, or the like; now,
as the equation contains the property of the tangents, by which s
and b may be expressed so as to have a relation to the tangents,
assume in this case any new curve chosen arbitrarily, and then s
and v will also have some known relation to this curve. By means
of the equation to the arbitrarily chosen curve, we shall be able
to replace the given property of tangents in favor of the curve re-
quired, namely, by removing one or other of the unknowns; and
by thus reducing the problem to such a state the inverse calculation
will come out the more easily.

The whole thing, then, comes to this; that, being given the
property of the tangents of any figure, we examine the relations
which these tangents have to some other figure that is assumed as
given, and thus the ordinates or the tangents to it are known. The
method will also serve for quadratures of figures, deducing them
one from another; but there is need of an example to make things
of this sort more evident; for indeed it is a matter of most subtle
intricacy.
ing roots, forming the sum of the quotients of the function divided by each of
the assumed root-factors in turn, and comparison with the original function.
Both therefore reduce to finding the common measure of the equation to the
curve (where the right-hand side is zero) and the differential of it.

Leibniz, however, strange to say, does not note that by taking one of his

arbitrary constants, g, equal to f, the equation has its degree lowered in the
particular case he has chosen.
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The manuscripts mentioned above seem to be all that
were found by Gerhardt belonging to the period 1673-5.
I feel that it is a great pity that they were not given in
full, or at least a little more fully. For instance, Gerhardt
mentions that Leibniz in the MS. of August 1673 con-
structs the so-called characteristic triangle, but does not
give Leibniz’s figure in connection. This figure should
have been given; for the figure given in October 1674 is
not the characteristic triangle as given by Leibniz in the
“postscript” (§ 1), or the Historia (§ 2), but it is the
Pascal diagram (assuming that the figure given by Cantor
is the correct one). It would be useful to know the date
at which Leibniz drops the Pascal diagram in favor of
one or other of the Barrow diagrams.

It is to be noticed at this date that Leibniz uses one
infinitesimal only, and wverifies that the method of Des-
cartes comes out correctly in the simple case of the parab-
ola; but he is not satisfied with the generality of the
method of neglecting the vanishing quantities.

Again, the second manuscript of October 1674 appears
to be immensely important; especially as it contains the
groundwork of some of the later manuscripts. Judging
by the little that is given of it, it would seem to be most
desirable that fuller extracts, at least, should have been
given. It is a matter for remark that this manuscript is
a long essay on series. Can this possibly have had any-
thing to do with the fact that it is not given in full?



V.

MANUSCRIPTS OF THE PERIOD 1676, 1677, AND
A LATER UNDATED MANUSCRIPT.

§§ 11-15.

~ Between the date of the manuscript last considered
and the one which follows there is a gap of seven months,
for which Gerhardt does not appear to have found any-
thing. This is very unfortunate; for in this interval Leib-
niz has attained to the important conclusion that the true
general method of tangents is by means of differences.
We saw that in November 1675 he had started to investi-
gate more thoroughly the direct method of tangents; but
the method is that of the auxiliary curve, and there is no
indication whatever of the characteristic triangle. Does
this interval correspond with the time taken by Leibniz
for his final reading of Barrow from Lect. VI to Lect. X,
comparing all the geometrical theorems with his own nota-
tion? Or is it only a strange coincidence that Leibniz’s
order is the same as that of Barrow, first the auxiliary
curve, and lastly the method of differences? One could
form a more definite opinion, if Leibniz had given a dia-
gram for the first problem he considers, the one in the next
following manuscript, which amounts to the differentiation
of an inverse sine. Such a diagram he must have had
beside him as he wrote; for I think the reader will find
that he wants one to follow the argument; with the idea
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of verifying this argument, I have not endeavored to supply
the omission.

The consideration of the direct method of tangents is
apparently, however, only as a means and not as an end;
for Leibniz harks back to the inverse method, and to the
catalogue of quadrable curves, which he seems to say he
has in hand. It is not until November 1676 that he seems
to be coming into his own; and it is not until July 1677 that
he has a really definite statement of his rules. On the other
hand, in July 1676, he is consistently using the differential
factor with all his integrals, and before the end of that
year he has the differential of a product, whether obtained
as the inverse of his theorem fydx = xy— fx dy, or by
the use of the substitution # + dx, y + dy, is not certain;
but this substitution appears in the manuscript for No-
vember 1676. Finally, in July 1677, appears the general
idea of the substitution of other letters, in order to eliminate
the difficulty caused by the appearance of the variable
under a root sign or in the denominator of a fraction; and
with this the whole thing is now fairly complete for all
algebraical functions. There is as yet no equally clear
method for the treatment of exponentials, logarithms, or
trigonometrical functions; for the latter he refers to a
geometrical diagram, strongly reminiscent of Barrow.

§ 11

26 June, 1676. .
Nova methodus Tangentium.
[New method of tangents.]

I have many beautiful theorems with regard to the method of
tangents both direct as well as inverse. Descartes’s method of
tangents depends on finding two equal roots, and it cannot be em-
ployed, except in the case when all the undetermined quantities
occurring in the work are expressible in terms of one, for instance,
in terms of the abscissa.

But the true general method of tangents is by means. of dif-
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ferences. That is to say, the difference of the ordinates, whether
direct or converging, is required. It follows that quantities that
are not amenable to any other kind of calculus are amenable to
the calculus of tangents, so long as their differences are known.
Thus if we are given an equation in three unknowns, in which »
is an abscissa, y an ordinate, and 2 the arc of a circle of which #
is the sine of the complement, e. g., the equation b*y=cx*+fz*>. To
find the next consecutive y, in place of x take x+ B, and in place of

Br ,3,, (51)
N REmh

z take z—dz, or, since dz= , we may take z—

hence we have

8 (y) =cx? + 2cxB+ B2 + /2 — \/2%1 f’}xj

Hence the difference between y and (y) is given by

2f;
bzy:b2(y)=+26xﬁ—v% =0 dy;

dy _ F2cx N =22z 1 16
Therefore B= R oy AL

From this the flexure or sinuosity of the curve can be found,

according as now 2cz\/7?-5%, now 2fzr predominates; for when
they are equal, the ordinate on that side on which it was previously
the greater then becomes the less. It is just the same, if several
other undetermined quantities, such as logarithms and other things
occur, no matter how they are affected, as for instance in the equa-
tion b*y=ca?+f22 +x2l, where 2 is supposed to be an arc, and I a
logarithm, x the sine of the complement of the arc, and y the num-
ber of the logarithm, b being the radius and unity, equal to ». Also
it is just the same, whenever an undetermined transcendental has
been derived from some dimension or quadrature that has not been
investigated.?

For the rest, many noteworthy and useful theorems now arise
from the foregoing by the inverse method of tangents. Thus gen-
eral equations, or equations of any indefinite degree may be formed,
at first indeed in two unknowns, x and y, only. But if in this way
the matter does not work out satisfactorily, it will easily do so when

51 In this and the following line I have corrected two obvious misprints;
they are evidently not the fault of Leibniz, for the lines that follow from them
are correct.

52 There is some doubt here as to whether Leibniz could have given an
example; but it must be remembered that these are practically only notes,
mostly for future consideration.
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the tables which I am investigating are finished; then it will be
possible to take one or more other letters, and to take the difference
as an arbitrary known formula, and when this is done it is certain
that finally in any case a formula will be found such as is re-
quired, and in this way also a curve which will satisfy the conditions
given ; but in truth the description of the curve will need diagrams
for these symbols, representing the sums of the arbitrarily chosen
differences.

Now once a curve is found having the tangent property that
we want, it will be more easy afterwards to find simpler construc-
tions for it. We have this also as a convenient means enabling
us to use many quantities that are transcendent, yet depending the
one on the other, such for example as are all those that depend
on the quadrature of the circle or the hyperbola. From these
investigations it will also appear whether or no other quadratures
can be reduced to the quadrature of the circle or the hyperbola.
Lastly, since the finding of maxima and minima is useful for the
inscription and circumscription of polygons, hence also, by employ-
ing these transcendent magnitudes, convergent series can be found,
and in the same way their terminations ; or of any quantities formed
in the same way. However in that case it may not be so easy to
argue about impossibility; at least indeed by the same method.
Only T do not see how we can find whether from the quadrature of
the circle, say, any sum can be found, when no quantity depending
on the dimensions of the circle enters into the calculation.

§ 12,
July, 1676.
Methodus Tangentium inversa.
[Inverse method of tangents.]

In the third volume of the correspondence of Descartes, 1 see
that he believed that Fermat’s method of Maxima and Minima is
not universal; for he thinks (page 362, letter 63) that it will not
serve to find the tangent to a curve, of which the property is that
the lines drawn from any point on it to four given points are to-
gether equal to a given straight line.

[Thus far in Latin; Leibniz then proceeds in French.]

Mons. des Cartes (letter 73, part 3, p. 409) to Mons. de Beaune.
“I do not believe that it is in general possible to find the con-
verse to my rule of tangents, nor of that which Mons. Fermat uses,
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although in many cases the application of his is more easy than
mine ; but one may deduce from it a posteriori theorems that apply
to all curved lines that are expressed by an equation, in which one
of the quantities, # or y, has no more than two dimensions, even
if the other had a thousand. There is indeed another method that
is more general and @ priori, namely, by the intersection of two
tangents, which should always intersect between the two points at
which they touch the curve, as near one another as you can im-
agine; for in considering what the curve ought to be, in order that
this intersection may occur between the two points, and not on this
side or on that, the construction for it may be found. But there
are so many different ways, and I have practised them so little, that
I should not know how to give a fair account of them.”

Mons. des Cartes speaks with a little too much presumption
about posterity; he says (page 449, letter 77) that his rule for re-
solving in general all problems on solids has been without compari-
son the most difficult to find of all things which have been discovered
in geometry up to the present, and one which will possibly remain
so after centuries, “unless I take upon myself the trouble of finding
others” (as if several centuries would not be capable of producing
a man able to do something that would be of greater moment).

(Page 459.) The question of the four spheres is one that is
easy to investigate for a man who knows the calculus. It is due
to Descartes, but as it is given in the book, it appears to be very
prolix.

~ The problem on the inverse method of tangents, which Mons:
des Cartes says he has solved (Vol. 3, letter 79, p. 460):

[Leibniz then continues in Latin]

EAD is an angle of 45 degrees. ABO is a curve, BL a tan-
gent to it; and BC, the ordinate, is to CL as N is to BJ. Then

BC=ny
hence, et ke B
y—x ¢ ¥y y
hence, £=t——ll,but£=é‘f’
¥ ¢ y dy
therefore %:ﬁ; , or dx y—x E=2; 7n;

hence fﬁy -fx Er—=-nfdy.
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Now, fdy=y, and (vdr=#°/2, and fdxy is equal to the
area ACBA, and the curve is sought in which the area ACBA is
equal to (#%/2) +ny=(AC?/2) +nBC.%

°
N B
E
/ J
S L A c )

Let this #%/2, i. e., the triangle ACJ be cut off from the area,
then the remainder AJBA should be equal to the rectangle ny.

The line that de Beaune proposed to Descartes for investigation
reduces to this, that if BC is an asymptote to the curve, BA the
axis, A the vertex, AB, BC, fixed lines, for BAC is a right angle.

B T A

\ S \v

Let RX be an ordinate, XN a tangent, then RN is always to
be constant and equal to BC; required the nature of the curve.

This is how I think it should be done.

Let PV be another ordinate, differing from the other one RX
by a straight line VS, found by drawing XS parallel to RN ; then

53 Leibniz has a footnote to this manuscript: “I solved in one day two
problems on the inverse methods of tangents, one of which Descartes alone
solved, and the other even he owned that he was unable to do.”

This problem is one of them, the first mentioned in the footnote given by
Leibniz. But it requires a stretch of imagination to consider Leibniz’s result
as a solution. For he ends up with a geometrical construction, that is at
least as hard as the construction that can be made by the use of the original
data. There is of course the usual misprint that one is becoming accustomed
to; but there is also the unusual, for Leibniz, mistake of using his data in-
correctly. Starting with the hypothesis that BC: CL = N: BJ, he writes CL =
N.BC/BJ (correcting the omission of the factor N), instead of CL=
BC.BJ/N.

The solution of the problem is y-#nlog(y—x 4n) =0, as originally
stated, or # = log(n—vy -+ x), if we continue from Leibniz’s erroneous re-
sult dx/dy =n/(y—x).

The point to be noted, however, is that Leibniz does not remark that “this
curve appertains to a logarithm.”
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the triangles SVX, RXN are similar, RN =t=¢, a constant, RX =y,
SY =dy, and therefore

;i; ‘_._ f 54
dr = Ies ; hence cy = | y dx or cdy vdx

If AQ or TR=2, and AC=§, while BC=q¢;

AC _/_TR _z, az
then, BC 2 BR 2 andthusx—f .

If dx is constant, then dz is also constant. Hence
a — a (= — a o
cdy= a4 dz, or =% ydz, and cy dy =7 dz, therefore

¢ )’_2__ =2 »?dzs. Hence we have both the area of the figure and the

v

moment to a certain extent (for something must be added on
account of the obliquity) ; also

cz E;:j—(yzz , and therefore ¢ rz E;:% vz dz.

Also £% _ @ g and hence, cf,dl — %z Now, unless I am
y f y f

greatly mistaken, f 9 is in our power.” The whole matter reduces
y

to this, we must find the curve®® in which the ordinate is such that

54 [eibniz does not see that this result immediately gives him the equation
that he requires. Thus # =c Logy, as he would have written it; the usual
omission of the arbitrary constant does not matter in this case, so long as BA
is taken as unity, which is possible with Leibniz’s data.

55 Here he seems to recognize that he has the solution. The next sentence
is, however, very strange. As long ago as Nov. 1675 he has written [a?/y as
Log y, and recognized the cormectxon between the integral and the quadrature
of the hyperbola and yet he says “unless I am mlstaken, [dy/y is always in
our power.’ Now notice that in the date there is no day of the month given,
contrary to the usual custom with these manuscripts so far; can it be p0551ble
that this date was afterward added from memory, and that the manuscript
should bear an earlier date? If not we must conclude that Leibniz has not
yet attained to a correct idea of the meaning of his integral sxgn, and is still
worried by the necessity (as it appears to him) of taking the ¥’s in arithmet-
ical progression.

56 The passage in the original Latin is very ambiguous, and it may be that
it is not quite correctly given; I think, however, that I have given the correct
idea of what Leibniz intended. One has to draw an auxiliary curve, in which
y=dy/dx, and then find its area; in that case it should be “d1v1ded by the
differences of the abscissae” instead of “divided by the abscissae.”
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it is equal to the differences of the ordinates divided by the ab-
scissae, and then find the quadrature of that figure.
;7:: 1 (57)
ay o
Figures of this kind, in which the ordinates are dy/y, dy/y?
dy/v3, are to be sought in the same way as I have obtained those

whose ordinates are ydy, y°dy, etc. Now w/a=dy/y, and since dy
may be taken to be constant and equal to B,° therefore the curve,
in which w/a=dy/y, will give wy=aB, which would be a hyper-
bola.®® Hence the figure, in which dy/y=g, is a hyperbola, no mat-
ter how you express y, and if y is expressed by ¢* we have dy=2¢,

2¢ 2 f dy Jc f L_
¢2 =3 Now, ¢ = fz, and therefore =2z,

which thus appertains to a logarithm.

Thus we have solved all the problems on the inverse method
of tangents,** which occur in Vol. 3 of the Correspondence of Des-
cartes, of which he solved one himself, as he says on page 460,
letter 79, Vol. 3; but the solution is not given; the other he tried
to solve but could not, stating that it was an irregular line, which
in any case was not in human power, nay not within the power of
the angels unless the art of describing it is determined by some other
means.

§ 13.

This manuscript bears no date: however, it was prob-
ably written very shortly after his call on Hudde at Am-
sterdam, on his way home from England (the second visit)

57 An interpolated note, marking a sudden thought or guess; for the next
sentence carries on the train of thought that has gone before. Query, some
interval of time, either short (such as for a meal) or long (continued the next
day), may have occurred here.

58 This cannot be referred back to the present problem, since Leibniz has
already assumed in it that dz and dx are constant. This may account for the
fact that he has hesitated to say that the integral represents a logarithm.

59 This working is intended to apply to the auxiliary curve mentioned
above, w standing for dx, and B for dv; hence the curve is not a hyperbola;
Leibniz seems to have been misled by the appearance of the equation suggest-
ing #y = constant.

60 Here apparently he leaves the muddle, in which he has entangled him-
self, and returns to his original equation ; he then remembers that he has found
before that the integral in question leads to a logarithm. (See p. 71.)

61 He has not solved either of them; nor can it be said from this that
“Leibniz in 1676 sought and found the curve whose subtangent is constant.”
Of all the work that chbmz has done hitherto, there is none that is so incon-
clusive as this in comparison.
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to Hanover. Leibniz stayed in Holland from October 1676
to December of that year; hence the date may be fairly
accurately assigned.

Hudde showed me that in the year 1662 he already had the
quadrature of the hyperbola, which I found was the very same as
Mercator also had discovered independently, and published. He
showed me a letter written to a certain van Duck, of Leyden I
“think, on this subject. His method of tangents is more complete
than that of Sluse, in that he is able to use any arithmetical pro-
gression, as in a simple equation, whereas Sluse and others can
use only one. Hence constructions can be made simple, while terms
can be eliminated at will. This also can be made use of for elim-
inating any letter with greater facility, for numerous equations of
all sorts are thereby rendered fit for elimination.

2+t tgx =0 Atay + 9 +r+y+a=0
Y z; -‘:z 2xdx + xdy + 2ydy+dx+dy =0
e ydx
3x 4 2px" 4 gx 0 to_dx _ xA2y+1
2yx*+yx y dy y+2x+1
yix

What I had observed with regard to triangular numbers for
three equal roots, and pyramidal numbers for four, was already
known to him, and indeed even more generally,

-1 012 3 456
-3 -1 001 3 6 1015
-4 -1 0 001 4 1020

Here it must be observed that the number of zeros increases, as
this is of the greatest service in separating roots.

He has also rules for multiplying equations, so that they are
not only determined for equal roots, but also for roots increasing
arithmetically, or geometrically, or according to any progression.

Hudde has a most elegant construction for describing two
curves, one outside and the other inside a circle, which are capable
of quadrature, and by means of these curves he finds the true area
of a circle so nearly, that with the help of the dodecagon, in
a number of six figures, there is an error of only three units, or
3,/100000.
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He has a method for finding the real roots of equations, having
some roots real and the rest impossible, by the help of another
equation having all its roots real, and as many in number as he
previously had of real and impossible together.

He had an example of a beautiful method of finding sums of
series by the continuous subtractions of geometrical progressions.
He subtracts geometrical progressions whose sums are also geo-
metrical progressions, and thus he can find the sums of the sums,
and so he obtains the sum of the series. This method is excellent for
a series whose numerators are arithmetical, and denominators geo-
metrical, such as
23 4
4 8 16’
He has three series, like those of Wallis, for interpolations for the
circle. He says that there are no more by that method, I think.

Also he can very often write down the quadratures of irra-
tionals, as also their tangents, without eliminating irrationals, or
fractions, etc.

1
2’

§ 4.
November, 1676.

Calculus Tangentium differentialis.
[Differential calculus of tangents.]

dxr=1, dx*=2x, dx*=3x?, etc.

11 1 2 1 _
dx_ 22 T Y dxa— 2, ete
dAx= \}]2"—; etc

From these the following general rules may be derived for the

differences and sums of the simple powers:
att!

dx* = ¢,x*"', and conversely f =
e+1’

Hence, a’12=7x72 will be —2x3 or —%,
x
and 4 x or dx* will be—4x~% or —%\/i.
x

dy

Let y—x?, then dy =2« dx ord =2x.
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This reasoning is general, and it does not depend on what the pro-
gression for the #’s may be.®*> By the same method, the general
rule is established as:

;,;e - e+1

Tr = ¢F 1

Suppose that we have any equation whatever, say,
ay* +byx +c2*+frr+ g*y+ h3=0,

and suppose that we write y+dy for y, and x+dx for x, we have,
by omitting those things which should be omitted, another equation
(63)

,and | xfdx =

ay*+byxr+cxt+frx+g*y+h* =0

a2dyy + bydx + 2cxdx + f2dx + g*dy

bxd-y— =0

ady*+bdxdy+cds® = 0
This is the origin of the rule published by Sluse. It can be extended
indefinitely: Let there be any number of letters, and any formula
composed from them; for example, let there be the formula made
up of three letters,
ay® bx? ¢z fyx gyx hxz ly mx nz p=0.
From this we get another equation
ay*  bx* ¢z fyxr simi- ly wmx simi- p
2adyy 2bdxx 2cdzz fydx larly Ildy mdx larly
frdy
ady* bdx* cdz* fdxdy .....
It is plain from this that by the same method tangent planes

62 AT LAST! The recognition of the fact that neither d+ nor dy need
necessarily be constant, and the use of another letter to stand for the function
that is being differentiated, mark the beginning, the true beginning, of Leib-
niz’s development of differentiation. Later in this manuscript we find him
using the third great idea, probably suggested by the second of those given
above, namely, the idea of substitution, by means of which he finally attains
to the differentiation of a quotient, and a root of a function.

It is very suggestive that this remarkable advance occurs after his second
visit to London, while he is staying in Holland. Did some one tell him then of
the work of Newton, or of Barrow’s method (which is geometrically an exact
equivalent of substitution), pointing out those things of which he had not
perceived the drift, or is it the result of his intercourse with Hudde? For
the date is that of his stay at The Hague. See Chap. VI, “Leibniz in London.”

63 This is Barrow all over; even to the words omissis omittendis instead
of Barrow’s rejectis rejiciendis. Lect. X, Ex. 1 on the differential triangle at
the end of the lecture.
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to surfaces may be obtained, and in every case that it does not
matter whether or no the letters #, y, 2 have any known relation,
for this can be substituted afterward.

Further, the same method will serve admirably, even though
compound fractions or irrationals enter into the calculation, nor is
there any need that other equations of a higher degree should be
obtained for the purpose of getting rid of them; for their differences
are far better found separately and then substituted; hence the
ordinary method of tangents will not only proceed when the ordi-
nates are parallel, but it can also be applied to tangents and any-
thing else, ay, even to those things that are related to them, such
as proportions of ordinates to curves, or where the angle of the
ordinates changes according to some determined law. It will be
worth while especially to apply the method to irrationals and com-
pound fractions.®*

dVa+bz+c. Letatbz+cs?=x;

—5 = 1 dx
then dl/;=—21/x, and E—é+2£z,
therefore AV a+ bzt = — b2z
2dzNa+bz+c2?

Taking any equation between two letters » and y for a curve,
and determining the equation of the tangent, either of the two let-
ters x or y can be eliminated, so that all that remains is the other
together with d# and dy; and this will be worth while doing in all
cases to facilitate the calculation.

If three letters are given, say #, y and 2, and the value of dz
is expressed in terms of x or y (or even of both), an equation for
the tangents will at length be obtained, in which again there will
be left only one or other of the letters x or y together with the

two, dv and dy; sometimes z itself cannot be eliminated. Also

this can be deduced in all cases of an assumed value of dz, and in
the same way more additional letters can be taken. Thus, bringing
together every general calculus into one, we obtain the most general
of them all. Besides, the assumption of a large number of letters
may be employed to solve problems on the inverse method of tan-
gents, with the assistance of quadratures.

84 Here we have the idea of substitutions, which made the Leibnizian
calculus so superior to anything that had gone before. Note that he still has
the erroneous sign that he obtained for the differentiation of V& at the be-
ginning of this manuscript. Also that the dz is wrongly placed in the denom-
inator of the result.



MANUSCRIPT DATED NoVv., 1676. 127

Thus, if the following problem is set for solution: It is given
that the sum of the straight lines CB, BP or

y+y%=xy; A
we have x »
dx + dy=uxidx B
x?
orx+y=§. P

Thus we have the curve in which the sum of CB+BP (multi-
plied by a constant 7) is equal to the rectangle AB.BC.

[There are two marginal notes by Leibniz that must be referred to, in this
manuscript. The first reads:

“It is especially to be observed about my calculus of differences that, if

b,ydx + xdy + etc. =0
then byx 4 [ etc. =0, and so on for the rest. It is to be seen what is to be
done about the %3. For the purpose of making these calculations better, the
equation ay? -+ byx 4- cx? -+ etc. can be changed into something else by means
of another relation of the curve, and if it turns out all right it may be compared
with another calculation of the differences, since it comes to the thing as by the
first.”

The two points to be noticed are that Leibniz now for the first time recog-
nizes the need of considering the arbitrary constant of integration, though
he hardly grasps how it arises, and that even now he cannot refrain from
harking back to his obsession of the obtaining of several equations for com-
parison. This note is not made any the easier to understand by its being
starred by Gerhardt for reference to the differentiation of #2, whereas it ob-
viously (when you come later to the passage) refers to the differentiation of
the equation of the second degree.

The second note refers to the substitution of x4 dx for # and y 4 dy for
v, and reads:

“Either dx or dy can be expressed arbitrarily, a new equation being ob-
tained; and either dx or dy being taken away, #, or y, say, can be otherwise
expressed in terms of the quantities. It is not true, I think, that this is so, for
then a catalogue of all curves capable of quadrature would result, by sup-
posing one or other of them to be constant.”

The point to be noticed in this rather ambiguous statement is that Leibniz
is still thinking of his catalogue, and is not himself convinced of the com-
pleteness of his method for all purposes.]

§ 15.

There is an interval of nearly seven months between
the date of the manuscript last considered and the one that
now follows. This interval has been full of work; for we
now find a clear exposition of the rules for the differentia-
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tion of a sum, difference, product, quotient, etc., though
these are without proof, or indication of the manner in
which they have been obtained. There is also no rule
given for a logarithm, an exponential, or a trigonometrical
ratio. ILeibniz may have known them, but even then it
would not be surprising to find them left out; for Leibniz’s
great idea was the use of his method to facilitate calcula-
tion. We must conclude therefore that these rules are a
development of the method of substitution outlined in the
preceding manuscript.

This essay has several peculiar characteristics of its
own, which distinguish it from those that have gone before.
It is written throughout in French; it is to some extent
historical and critical, having the appearance of being
prepared for publication, or possibly as a letter; this is
corroborated by the fact that there is an original draft and
a more fully detailed revision. Could it be that this is the
original of Leibniz’s communication of this method to New-
ton and others? If so, Leibniz is very careful not to give
much away. The figures are strongly reminiscent of Bar-
row, but the context does not deal with subtangents, which
are such a feature in all Barrow’s work.

The start from the work of Sluse is peculiar; it seems
to suggest that Leibniz is pointing out that his method is
a fuller development of that of the former. ILeibniz has
already hazarded two different guesses at the origin of
the rules given by Sluse; the second, namely, by substitu-
tion of # + dx for x, etc., being the more probable. Is
Leibniz trying to draw a red herring across the trail, the
real trail that leads to Barrow’s @ and e?

11 July 1677.

Méthode générale pour mener les touchantes des Lignes Courbes
sans calcul, et sans réduction des quantités irrationelles et
rompues.
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[General method for drawing tangents to curves without cal-
culation,and without reducing irrational or fractional quan-
tities.]

Slusius has published his method of finding tangents to curves
without calculation, in which the equation is purged of irrational
or fractional quantities.

T \

(4p!

For example, a curve DC being given, in which the equation
expresses the relation between BC and AS, which we will call y,
and AB or SC, which we will call x; let this be

a+bxr+cy+dxy+ex?+fy*+gaty+hry*+ ka®+1ly* +etc.=0.

One has only to write

0 + b+ cv + dxv + 2exé + 2fyv + gxv + hy2E + 3kx2E + 3h%

dyé 29xy¢é 2hxyv

+mxy? + nxdy + pxy® + gxt + (65)

+2mxtyv+ nxdv + pyE + 4gx3€ + 4rytu

+ 2mxy?€ + 3nxtyé + 3 pylav
that is to say, if the equation is changed to a proportion,

é _ c+dx+2fy + g% + 2hxy + 3% + 2maxy + ete.
v b+dy+2ex +2gxy + Iyt + 3% + ete. -’

. £ . TB CS=y
and, supposing that , cxpresses the ratio o=z ° “sv
then TB or SV can be obtained, if BC and SC are supposed to
be given. When the given magnitudes, b, ¢, d, e, etc., with their
proper signs, make the value of £/v a negative magnitude, the tan-
gent will not be CT which goes toward A, the start of the abscissa
AB, but C(T) which goes away from it. That is all that has been

65 This line represents the “etc.” of the original equation, and is set down
for the purpose of getting the derived terms; the complete derived equation

therefore consists of the two lines above and the two below. Note the omis-
sion of the negative sign, when changing from the equation to the proportion.
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published up to the present time, easy to understand by any one that
is versed in these matters. But when there are irrational or frac-
tional magnitudes, which contain either # or y or both, this method
cannot be used, except after a reduction of the given equation to
another that is freed from these magnitudes. But at times this
increases to a terrible degree the calculation and obliges us to rise
to very high dimensions, and leads us to equations for which the
process of depression is often very difficult. I have no doubt that
the gentlemen®® I have just named know the remedy that it is neces-
sary to apply, but as it is not as yet in common use, and is I believe
known to but a few, also because it gives the finishing touch to the
problem that Descartes said was the most difficult to solve of all geo-
metrical problems, because of its general utility, I have thought it
a good thing to publish it.

Suppose we have any formula or magnitude or equation such
as was given above,

atbr+cy+dyy+ex®+fy?+ete.;
for brevity let us call it v; that which arises from it when it is
treated in the manner given above, namely,
bé+cv+drv+dyé+ etc.;

will be called do; and in the same way, if the formula is A or g,
then the result above will be dA or dp, and similarly for everything
else. Now let the formula or equation or magnitude o be equal to
pdA—M\dp

o

M u, then I say that do will be equal to This will be

sufficient to deal with fractions.

dw
Again, let o be equal to ]7 o, then do = z.%l’/l/ o ; and this

will be sufficient for the proper treatment of irrationals.

Algorithm of the new analysis for maxima and minima, and
for tangents.

Let AB=x, and BC=y, and let TVC be the tangent to the

curve AC; then the ratio Bgzy or S(S:; % will be called Z—j )

68 Leibniz, at the beginning, first wrote, “Hudde, Sluse, and others”; but
later he struck out all but Sluse. (Gerhardt.)
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Let there be two or more other curves, AF, AH, and suppose
that BF =7 and BH=w, and that the straight line FL is the tangent

L
T
Al S
™M
/FB H\N ¢

to the curve AF, and MH to the curve AH; also LF'_ dx , and

. FB dv
%—g ] fl%; then I say that dy, or dvw, will be equal to vdw +wdv;
and if v=w=x, and y=vw=2?, then by substituting » for v and
for w, we shall have dvw=2xdx.
(This will also hold good if the angle ABC is either acute or
obtuse; also if it is infinitely obtuse, that is to say, if TAC is a
straight line.)

[Of this rough draft there is the following revision, and this
obviously comes within the same period. (Gerhardt.)]

Fermat was the first to find a method which could be made
general for finding the straight lines that touch analytical curves.
Descartes accomplished it in another way, but the calculation that
he prescribes is a little prolix. Hudde has found a remarkable
abridgment by multiplying the terms of the progression by those
of the arithmetical progression. He has only published it for equa-
tions in one unknown ; although he has obtained it for those in two
unknowns. Then the thanks of the public are due to Sluse; and
after that, several have thought that this method was completely
worked out. But all these methods that have been published sup-
pose that the equation has been reduced and cleared of fractions
and irrationals; I mean of those in which the variables occur. I
however have found means of obviating these useless reductions,
which make the calculation increase to a terrible degree, and oblige
us to rise to very high dimensions, in which case we have to look
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for a corresponding depression with much trouble; instead of all
this, everything is accomplished at the first attack.

This method has more advantage over all the others that have
been published, than that of Sluse has over the rest, because it is
one thing to give a simple abridgment of the calculation, and quite
another thing to get rid of reductions and depressions. With respect
to the publication of it, on account of the great extension of the
matter which Descartes himself has stated to be the most useful
part of Geometry, and of which he has expressed the hope that there
is more to follow—in order to explain myself shortly and clearly,
I must introduce some fresh characters, and give to them a mew
Algorithm, that is to say, altogether special rules, for their addition,
subtraction, multiplication, division, powers, roots, and also for
equations.

Explanation of the characters.

Suppose that there are several curves, as CD, FE, HJ, con-
nected with one and the same axis AB by ordinates drawn through
one and the same point B, to wit, BC, BF, BH. The tangents CT,
FL, HM to these curves cut the axis in the points T, L, M; the

T

M
At

H

< c
/v \ \
//-‘/
g N J 5
“@

/
R
P

point A in the axis is fixed, and the point B changes with the
ordinates. Let AB=x, BC=y, BF=w, BH=v; also let the ratio
of TB to BC be called that of dx to dy, and the ratio of LB to BF
that of dx to dw, and the ratio of MB to BH that of dx to dv.
Then if, for example, y is equal to vw, we should say dvw instead
of dy, and so on for all other cases. Let a be a constant straight
line; then, if y is equal to @, that is, if CD is a straight line parallel
to AB, dy or da will be equal to O, or equal to zero. If the magni-
tude dx/dw comes out negative, then FL, instead of being drawn
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toward A, above B, will be drawn in the contrary direction, be-
low B.

Addition and Subtraction. Let y=v+w(=+)a, then dy will be
equal to dv+dw(=+)0.

Multiplication. Let y be equal to avw, then dy or davw or advw
will be equal to av dw + aw dv.

Division. Let y be equal to 2 then gy or 42>
aw’ aw

or la’z will be equal to d dv-—;/ dw
a w aw

The rules for Powers and Roots are really the same thing.

Powers. If y=w? (where z is supposed to be a certain number),
then dy will be equal to 2, w1, dw.

dw
Roots or extractions. If y= lz// w, then dz= 2 =
0

Equations expressed in rational integral terms.
a+bv+cy+tvy +ev? + fy? + gvPy + hvy? + kv® + 1y®
+ MUY+ nVYY + pUYt + qvt+ryt=0,
supposing that a, b, c, ¢, e, etc. are magnitudes that are known and
determined ; then we should have
0 = bdv + cdy + tvdy + 2evdv + 2fydy + gvidy + hy*dv
tydy +2gvydy +2hvydy

+3lydy + 2mvtydy + notdy + py*dv +4qvidv+dryidy
+ 2muy2dv + 3nviydv + 3py*vdy
This rule can be proved and continued without limit by the pre-
ceding rules; for, if
a+bv+cy+tvy+ev?+ fy?+ gvty +etc. =0,

then da+dbv+dcy + tdvy + edv® + fdy? + gdv?y + etc. will also be equal
to 0. Now de=0, dbv=>bdv, dcy=cdy, dvy=vdy+ydv; also dv*=
2vdv, since dv? is equal to z,2—1,dv, that is to say (by substituting
2 for 2) 2vdv; and dv*y=v*dy+2vydv, for, supposing that w=17?,
then do?y will be dwy, and dwy=ydw+wdy, and dw or dv*=2vdv;
hence in the value of dwy, substituting for wand dw the values found
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for them, we shall have dv?y=1v2dy+2vydv, as obtained above.
This can go on without limit. If in the given equation a+bv+cy
+ etc. =0, the magnitude v were equal to #, that is to say if the line
JH were a straight line which when produced passed through the
point A, making an angle of 45 degrees with the axis, then the
resulting equation, transformed into a proportion, would give the
rule for the method of tangents, as published by Sluse; and, in
consequence, this is nothing but a particular case or corollary of
the general method.

Equations complicated in any manner with fractions and irra-
tionals. These could be treated in the same way without any calcu-
lation, by supposing that the denominator of the fraction or the
magnitude of which it is necessary to take the root is equal to a
magnitude or letter, which is to be treated according to the pre-
ceding - rules.*” .

Also, when there are magnitudes which have to be multiplied
by one another, there is no need to make this multiplication in
reality, which saves still more labor. One example will be suffi-
cient.

[No example is given, however; but the following seems to
have been added later, according to Gerhardt.]

Lastly this method holds good when the curves are not purely
analytical, and even when their nature is not expressed by such
ordinates, and in addition it gives a marvelous facility for making
geometrical constructions. The true reason for an abridgment so
admirable, and one that enables us to avoid reductions of fractions
and irrationals, is that one can always make certain, by means of
the preceding rules, that the letters dy, dv, dw, and the like, shall
not occur in the denominator of the fraction, or under the root-
sign.

§ 16.

The next manuscript appears to be a more detailed
revision of the one last considered. It bears no date; but
it is safe to say that it belongs to a considerably later period
than that of July 1677. For in this are given, by means
of the infinitely small quantities dx and dy, proofs of the

67 The complete statement of the method of substitutions.
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fundamental rules for the first time; the figure notation
is changed from the clumsy C, (C), ((C)) to the neat
1C, 2C, 5C; the notation for proportion is now a:b::c:d;
and there are several other changes that readers will notice
as they go along. The ideas of Leibniz are now approach-
ing crystallization, as is evidenced by the fact that fy dx is
clearly stated for the first time to be the sum of rectangles
made from y and dv. It is rather astonishing, however, in

this connection to find fxr+y—v= fxr+ fy— v,
which can have no significance according to the above
definition; and also to find the whole thing explained by
arithmetical series, in which however it is to be observed
that dx is not taken to be constant. But for this one might
almost place this later than the publication of the method
in the Acta Eruditorum in 1684 ; in this essay Leibniz gave
a full account of his rules without proofs, and is evidently
trying to get away from the idea of the infinitely small, an
effort which culminates in the next, and last, manuscript
of this set.

If then we guess the date to be about 1680, probably
we shall not be very far out.

A remarkable feature of this manuscript is the omission
of really necessary figures, without which the text is very
hard to follow. Of course this manuscript was written
for publication, and the suggestion may be made that the
diagrams were drawn separately, just as in books of that
time they were printed separately on folding plates; but
then, why has he given three diagrams? The only other
suggestion that can be made as far as I can see is that he
was referring to texts, in which the diagrams were already
drawn, by Gregory St. Vincent, Cavalieri, James Gregory
(one of whose theorems he quotes), Barrow (who strangely
enough also quotes the very same theorem), Wallis, and
others. For he mentions many of these authors, but there
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is never a word about Barrow. I consider that he was
looking up their theorems to show how much superior his
method was to any of theirs.

It is to be observed that not even in this manuscript is
there any mention of logarithms, exponentials, or trigono-
metrical ratios. We shall see later that Leibniz is reduced
to obtaining the integral of (a® + 4?)% by reference to a
figure and its quadrature; that is to say, he is apparently
unable to perform the integration analytically. It there-
fore follows that, if he got a great deal from Barrow, he
was unable to understand the Lect. XII, App. I of the
Lectiones Geometricae.

The final conclusion that I personally have come to,
after completing this examination of the manuscripts of
Leibniz, as far as they are given by Gerhardt is this:

As far as the actual invention of the calculus as he
understood the term is concerned, Leibniz received no help
from Newton or Barrow; but for the ideas which underlay
it, he obtained from Barrow a very great deal more than he
acknowledged, and a very great deal less than he would
like to have got, or in fact would have got if only he
had been more fond of the geometry that he disliked. For,
although the Leibnizian calculus was at the time of this
essay far superior to that of Barrow on the question of
useful application, it was far inferior in the matter of
completeness.

(No date.)

Elementa calculi novi pro differentiis et summas, tangentibus et
quadraturis, maximis et mimimis, dimensiombus linearum,
superficierum, solidorum, alitsque communem calculum trans-
cendentibus.

[The elements of the new calculus for differences and sums, tan-
gents and quadratures, maxima and minima, dimensions of
lines, surfaces, and solids, and for other things that transcend
other means of calculation.]
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Let CC be a line, of which the axis is AB, and let BC be ordi-
nates perpendicular to this axis, these being called y, and let AB
be the abscissae cut off along the axis, these being called x.

T
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Then CD, the differences of the abscissae, will be called dx;
such are ,C,D, ,C,D, ,C,D, etc. Also the straight lines ,D,C,
.D,C, ;D,C, the differences of the ordinates, will be called dy.
If now ‘these dr and dy are taken to be infinitely small, or the
two points on the curve are understood to be at a distance apart
that is less than any given length, i. e, if ;D ,C, ,D,C, etc. are con-
sidered as the momentaneous increments®® of the line BC, increas-
ing continuously as it descends along AB, then it is plain that the
straight line joining these two points, ,C,C say, (which is an element
of the curve or a side of the infinite-angled polygon that stands
for the curve), when produced to meet the axis in ,T, will be the
tangent to the curve, and ,T,B (the interval between the ordinate
and the tangent, taken along the axis) will be to the ordinate ;B ,C as
,C.,Dis to ,D,C; or, if ,T,B or ,T,B, etc. are in general called ¢,
then ¢:9 :: da:dy. Thus to find the differences of series is to find
tangents.

For example, it is required to find the tangent to the hyperbola.

. aa . . .
Here, since y= ~ » supposing that in the diagram, x stands for

AB the abscissa along an asymptote, and e for the side of the
power, or of the area of the rectangle AB.BC; then

aa
&y = — —d. Cy
4 XX ¥

88 eibniz has evidently seen Newton’s work at the time of this composi-
tion; also the use of the word “descends” in the next line again suggests
Barrow, while the figure is exactly like the top half of the diagram given by
Barrow for Lect. XI, 10, which is the theorem of Gregory that is quoted by
Leibniz also. For this figure, see Note 71, p. 140.
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as will be soon seen when we set forth the method of this calculus;

hence dx:dyort:y::—-xx:aa ::-X: gf 11 —x:y; therefore t=-y,

A B T

that is, in the hyperbola BT will be equal to AB, but on account of
the sign —x, BT must be taken not toward A but in the opposite
direction.

Moreover, differences are the opposite to sums; thus B ,C is
the sum of all the differences such as ,D,C, ,D,C, etc. as far as A,
even if they are infinite in number. This fact I represent thus,
fdy=y. Also I represent the area of a figure by the sum of all
the rectangles contained by the ordinates and the differences of the
abscissae, i. e., by the sum ,B,D+,B,D+,B;D+etc. For the nar-
row triangles ,C,D,C, ,C,D,C, etc., since they are infinitely small
compared with the said rectangles, may be omitted without risk;
and thus I represent in my calculus the area of the figure by fydx,
or the sum of the rectangles contained by each y and the dx that
corresponds to it; here, if the d+’s are taken equal to one another,
the method of Cavalieri is obtained. .

But we, now mounting to greater heights, obtain the area of
a figure by finding the figure of its summatrix or quadratrix; and
of this indeed the ordinates are to the ordinates of the given
figure in the ratio of sums to differences; for instance, let the curve
of the figure required to be squared be EE, and let the ordinates
to it, EB, which we will call ¢, be proportional to the differences
of the ordinates BC, or to dy; that is let . B,E:,B,E :: ,D,C:,D,C,
and so on; or again, let A,B:,B,C, ,C,D:,D,C, etc,,” or dx:dy
be in the ratio of a constant or never-varying straight line ¢ to ;B ,E
or ¢; then we have

dr:dy::a:e or edvr=ady;
S fedx= fady.

But edx is the same as e multiplied by its corresponding dx,
such as the rectangle ;B E, which is formed from ,B,E and ,B ,B;
hence, fedx is the sum of all such rectangles, ;B ,E+,B,E+,B,E
+etc., and this sum is the figure A ,B ,EA, if it is supposed that the
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dx’s, or the intervals between the ordinates e, or BC, are infinitely
small. Again, ady is the rectangle contained by a and dy, such as
is contained by ,D,C and the constant length a, and the sum of

+£ «C
0

these rectangles, namely fady, or ;D ,C.a+,D;C.a+,D,C.a+etc.
is the same as ,D ,C+,D,C+,D,C+etc. into @, that is, the same
as ,B,C.a; therefore we have (ady=afdy=ay. Therefore fedx
=ay, that is, the area A B ,EA will be equal to the rectangle con-
tained by ,B,C and the constant line a, and generally ABEA is
equal to the rectangle contained by BC and a.*®

Thus, for quadratures it is only necessary, being given the line
EE, to find the summatrix line CC, and this indeed can always be
found by calculus, whether such a line is treated in ordinary geom-
etry or whether it is transcendent and cannot be expressed by alge-
braical calculation; of this matter in another place.

Now the triangle for the line I call the characteristic of the
line, because by its most powerful aid there can be found theorems
about the line which are seen to be admirable, such as its length,
the surface and solid produced by its rotation, and its center of

gravity ; for ;C,C is equal to VVdx.dx+dy.dy. From this we have

69 Leibniz does not give a diagram, but it is not difficult to construct his
figure from the enunciation that he gives for it. The whole of this paragraph
should be compared with the following extract from Barrow (Lect. XI, 19),
piece by piece.

“Again, let AMB be a curve of which the axis is AD and let BD be
perpendicular to AD; also let KZL be another line such that, when any point
M is taken in the curve AB, and through it are drawn MT a tangent to the
curve AB, and MFZ parallel to DB, cutting KZ in Z and AD in F, and R is
a line of given length, TI': FM = R: FZ. Then

the space ADLK is equal to the rectangle con- " 2
tained by R and DB. 1N
For, if DH=R and the rectangle BDHI L
is completed, and MN is taken to be an indefi- T A gl cee- R--

nitely small arc of the curve AB, and MEX, 0

NOS are drawn parallel to AD; then we have N lo

NO:MO=TF:FM=R:FZ; s X
‘ 5}

NO.FZ=MO.R and FG.FZ=ES.EX.

Hence, since the sum of such rectangles as
FG.FZ differs only in the least degree from
the space ADLK, and the rectangles ES.EX form the rectangle DHIB, the
theorem is quite obvious.”
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at once a method for finding the length of a curve by means of
some quadrature; e. g., in the case of the parabola, if y =x_:’ , then we

xdx

have dy= , and hence 1C zC—- 2% \aa + xx; hence, ,C.C:dx as

the ordinate of the hyperbola Vaa+xx is to the constant line a;
that s, %fdx\laa+xx , a straight line equal to the arc of a

parabola, depends on the quadrature of the hyperbola, as has already
been found by others; and thus we can derive by the calculus all
the most beautiful results discovered by Huygens, Wallis, van
Huraet, and Neil.”

I said above that ¢:y :: dv:dy; hence we have tdy=1ydx, and
therefore ftdy= fyds. This equation, enunciated geometrically,
gives an elegant theorem due to Gregory,”™ namely that, if BAF is a
right angle, and AF=BG, and FG is parallel to AB and equal to
BT, that is, ,FF,G=,B,T, then f¢dy, or the sum of the rectangles
contained by ¢ (e.g., ,F,G or B,T) and dy (,;F,F or ;,D,C) is.
equal to the rectangles ,F ,G+,F ,G+,F G +etc.; or the area of the

70 All the things given are to be found in Barrow, but his name is not even
mentioned.

1 This is the strangest coincidence of all! For, Barrow also quotes this
very same theorem of Gregory, and no other theorem; also it occurs in this
very same Lect. XI that has been referred to already! Leibniz does not give
a diagram; nor from his enunciation could I complete the figure required, until
I had referred to the figure gwen by Barrow!!! The two diagrams are given
below for comparison, Barrow’s figure being the one referred to in the note
above. Query, is Leibniz’s figure taken from Gregory’s orlgmal which I have
not been able to see, or is it the Leibnizian variation of Barrow’s?
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figure A ,F ,GA is equal to fydxz, that is, to the figure A B ,CA;
or generally, the figure AFGA is equal to the figure ABCA.

Again, other things, which are immediately evident on inspec-
tion, from a figure, are readily deduced by the calculus; for instance,
in the case of the trilinear figure ABCA, the figure ABCA together
with its complementary figure AFCA is equal to the rectangle
ABCEF, for the calculus readily shows that (ydx+ fxdy=xy.

If it is required to find the volume of the solid formed by
rotation round an axis, it is only necessary to find fy*dx; for the
solid formed by a rotation round the base, f#*dy; for the moment
about the vertex, fy+dx; and these things serve to find the center
of gravity of a figure, and also give the frusta of Gregory St.
Vincent, and all that Pascal, Wallis, De Laloubére, and others have
found out about these matters.

For, if it is required to find the centers of lines, or the surfaces
generated by their rotation, e. g., the surface generated by the rota-
tion of the line AC about AB, it is only necessary to find

fy v dx. dx + dy. dy

or the sum of every PC applied to the axis at the point B that
corresponds to it, (thus ,P,C will be applied perpendicular to the
axis AB at ,B), producing in this way a figure of which the above
represents the area. Thus the whole thing will immediately reduce
to the quadrature of some plane figure, if, instead of y and dy, their
values, obtained from the nature of the ordinates and the tangents
to the curve, are substituted. Thus, in the case of the parabola,

. . — a. . .
if y is equal to V/2ax, then dy= %J—C (as will be seen directly) ;

hence we get

f dxdx + — dxa’x or J dxA[yy + aa or fa'x 2ax +aa,

which depends on the quadrature of the parabola (for every

V2ax+aa or PC can be applied to a parabola, if it is supposed that
AC is the parabola, and AB its axis, provided in that case the
figure is changed and the curve turns its concavity toward the
axis) ;" and this may be obtained by ordinary geometry, and there-

72 The Latin here is rather ambiguous; query, a misprint. But I think 1
have correctly rendered the argument. It is to be noted that the parabola
was at this period always thought of in the form we should now denote by
the cquation y = #2, and the figure referred to by Leibniz is that which Wallis
calls the complement of the semiparabola.
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fore also a circle will be found equal to the surface of the parabolic
conoid ; but this is not the place to deduce it at full length.

Now these, which may seem to be great matters, are only the
very simplest results to be obtained by this calculus; for many
much more important consequences follow from it, nor does there
occur any simple problem in geometry, either pure or applied to
mechanics, that can altogether evade its power. Now we will ex-
pound the elements of the calculus itself.

The fundamental principle of the calculus.

Differences and sums are the inverses of one another, that is
to say, the sum of the differences of a series is a term of the series,
and the difference of the sums of a series is a term of the series;
and I enunciate the former thus, f(dv=x, and the latter thus,
dfr=x. ,

Thus, let the differences of a series, the series itself, and the
sums of the series, be, let us say,

Diffs. 1 2 3 4 5 ....... dx
Series o 1 3 6 10 15 .... =«
Sums 0 1 4 10 20 25 .. fx

Then the terms of the series are the sums of the differences, or
x:fdx; thus, 3=1+2, 6=1+243, etc.; on the other hand, the
differences of the sums of the series are terms of the series, or
d f x=x; thus, 3 is the difference between 1 and 4, 6 between
4 and 10.

Also da=0, if it is given that a is a constant quantity, since
a-a=0.

Addition and Subtraction.

The difference or sum of a series, of which the general term
is made up of the general terms of other series by addition or sub-
traction, is made up in exactly the same manner from the differ-
ences or sums of these series; or

r+y-v=fdx+dy—dv, fr+y-v=fr+ fy- fv
This is evident at sight, if you take any three series, set out their

sums and their differences, and take them together correspondingly
as above.
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Stmple Multiplication.

Here dry=xdx+ydy, or xy=[xdx+[ydy.
This is what we said above about figures taken together with their
complements being equal to the circumscribed rectangle. It is
demonstrated by the calculus as follows:

dxy is the same thing as the difference between two successive
xy’s; let one of these be xy, and the other x+dx into y+dy; then
we have

dxy=x+dx.y+dy—-xy=xdy+ydr+dxzdy;

the omission of the quantity dx dy, which is infinitely small in com-
parison with the rest, for it is supposed that d+ and dy are infinitely
small (because the lines are understood to be continuously increas-
ing or decreasing by very small increments throughout the series
of terms), will leave x dy + y dx ; the signs vary according as y and »
increase together, or one increases as the other decreases; this
point must be noted.

Simple Division.
y_xdy—ydx

Here we have d=
x xx
+ - . .
For, dZ = yrdy oy _ xdy—y dx , which becomes (if we
x x +dx x xx + x dx
write #x for 44+ dx, since # dx can be omitted as being infinitely

small in comparison with xx) equal to M ; also, if y=aa,
X

then dy=0, and the result becomes — %i—x , which is the value we

used a little while before in the case of the tangent to the hyper-
bola.
From this any one can deduce by the calculus the rules for

Compound Multiplication and Division ; thus,
drvy=xydv+axvdy+yvdr,
L= dy—yv dz—yz dv

vz v0.22 !
as can be proved from what has gone before; for we have

gy = xH—ydx,

x xx ’
hence, putting zv for x, and 2dv+v dz for dx or dzv in the above,
we obtain what was stated.
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Powers follow: dx*=2xdx, d+*=3x%dx, and so on. For, putting
y=x, and v=2x, we can write d4* for dry, and this is (from above)
equal to xdy+ydx, or (if #=y, and consequently dr=dy) equal
to 2xdx. Similarly, for d2® we write dxyv, that is (from above)
xydv+rvdy+yvdx, or (putting # for v and v and dx for dy and
dv) equal to 3x%dr. Q.E.p. By the same method, in general,

dx*=e.x"~} dx, as can easily be proved from what has been said.

Hence also, a’i = - i,f{f
x x
L1 . 1 1 .
For, if pril then e= —#%, and 2" '= st as is well known to

any one who understands the nature of the exponents in a geo-
metrical progression. The same thing will do for fractions. The
procedure is the same for irrationals or Roots. d./x*=dx"”",
(where by h:7 I mean h/r, or h divided by ), or dx¢ (taking e
equal to h/r), or e.x <=t dv, by what has been said above, or (by

substituting once more A:r for e, and h—r:7 for e~ 1) /i X777 dx;
v

and thus finally we get the value of 4.{/ 2"
Moreover, conversely, we have
x 1 1 i
/‘x a’x-——_ﬁ —a’x T o/ x" a’x——~< V xkrrr
These are the elementary principles of the dlfferentlal and
summatory calculus, by means of which highly complicated formu-
las can be dealt with, not only for a fraction or an irrational quan-
tity, or anything else; but also an indefinite quantity, such as x or y,
or any other thing expressing generally the terms of any series,
may enter into it.

§ 17.

The next manuscript bears no date; but this can be
easily assigned to a certain extent, from internal evidence.
It is for one thing later than the publication in the Acta
Eruditorum of Leibniz’s first communication to the world
of his calculus in 1684. The manuscript is an answer, or
rather the first rough draft probably of such an answer,
to the animadversions of Bernhard Nieuwentijt against
the idea of the infinitesimal calculus. The latter stated
that (i) Leibniz could explain no more than Barrow or



REPLY TO NIEUWENTIJT: UNDATED. 145

Newton how the infinitely small differences differed from
absolute zero; (ii) it was not clear how the differentials
of higher order were obtained from those of the first
order; (iii) the differential method cannot be applied to
exponential functions. Leibniz answers the first point skil-
fully, fails over the second through erroneous work, which
I think he afterward perceived; for he has a note that the
whole thing is to be carefully revised before publication.
It almost seems that he was not quite confident in his own
powers of completely answering these objections, for he
also notes that the rudeness of language in which the
answer is commenced must be mollified.

On the third point he is silent; in the later written
Historia, we have seen he is able to get, not over, but round
the difficulty of the exponential function; but the silence
here would seem to say that Leibniz could not manage ex-
ponentials as yet.

The success of the answer to the first point is due to
the underlying principle that the ratio dy: dx ultimately
becomes a rate; when this idea is muddled by an admixture
of the infinitesimal idea in the last paragraph the result
is almost disastrous. Leibniz, however, looked on his cal-
culus as a tried tool more than anything else.

When my infinitesimal calculus, which includes the calculus of
differences and sums, had appeared and spread, certain over-precise
veterans began to make trouble; just as once long ago the Sceptics
opposed the Dogmatics, as is seen from the work of Empicurus
against the mathematicians (i. e., the dogmatics), and such as
Francisco Sanchez, the author of the book Quod nihil scitur, brought
against Clavius; and his opponents to Cavalieri, and Thomas Hobbes
to all geometers, and just lately such objections as are made against
the quadrature of the parabola by Archimedes by that renowned
man, Dethlevus Cluver. When then our method of infinitesimals,
which had become known by the name of the calculus of differences,
began to be spread abroad by several examples of its use, both of
my own and also of the famous brothers Bernoulli, and more espe-
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cially by the elegant writings of that illustrious Frenchman, the
Marquis d’Hospital, just lately a certain erudite mathematician,
writing under an assumed name in the scientific Journal de Trevoux,
appeared to find fault with this method. But to mention one of
them by name, even before this there arose against me in Holland
Bernard Nieuwentijt, one indeed really well equipped both in
learning and ability, but one who wished rather to become known
by revising our methods to some extent than by advancing them.
Since I introduced not only the first differences, but also the second,
third and other higher differences, inassignable or incomparable
with these first differences, he wished to appear satisfied with
the first only; not considering that the same difficulties existed
in the first as in the others that followed, nor that wherever they
might be overcome in the first, they also ceased to appear in the
rest. Not to mention how a very learned young man, Hermann
of Basel, showed that the second and higher  differences were
avoided by the former in name only, and not in reality ; moreover,
in demonstrating theorems by the legitimate use of the first differ-
ences, by adhering to which he might have accomplished some
useful work on his own account, he fails to do so, being driven to
fall back on assumptions that are admitted by no one; such as
that something different is obtained by multiplying 2 by m and by
multiplying m by 2; that the latter was impossible in any case in
which the former was possible; also that the square or cube of a
quantity is not a quantity or Zero.

In it, however, there is something that is worthy of all praise,
in that he desires that the differential calculus should be strength-
ened with demonstrations, so that it may satisfy the rigorists; and
this work he would have procured from me already, and more
willingly, if, from the fault-finding everywhere interspersed, the
wish had not appeared foreign to the manner of those who desire
the truth rather than fame and a name.

It has been proposed to me several times to confirm the essen-
tials of our calculus by demonstrations, and here I have indicated
below its fundamental principles, with the intent that any one who
has the leisure may complete the work. Yet I have not seen up
to the present any one who would do it. For what the learned
Hermann has begun in his writings, published in my defence against
Nieuwentiit, is not yet complete.

For I have, beside the mathematical infinitesimal calculus, a
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method also for use in Physics, of which an example was given in
the Nowuvelles de la République des Lettres; and both of these I
include under the Law of Continuity ; and adhering to this, I have
shown that the rules of the renowned philosophers Descartes and
Malebranche were sufficient in themselves to attack all problems
on Motion.

I take for granted the following postulate:

In any supposed tramsition, ending in any terminus, it is per-
missible to institute a general reasoning, in which the final terminus
may also be included.

For example, if A and B are any two quantities, of which the
former is the greater and the latter is the less, and while B remains
the same, it is supposed that A is continually diminished, until A
becomes equal to B; then it will be permissible to include under a
general reasoning the prior cases in which A was greater than B,
and also the ultimate case in which the difference vanishes and A
is equal to B. Similarly, if two bodies are in motion at the same
time, and it is assumed that while the motion of B remains the
same, the velocity of A is continually diminished until it vanishes
altogether, or the speed of A becomes zero; it will be permissible
to include this case with the case of the motion of B under one
general reasoning. We do the same thing in geometry, when two

(=Y
v B B
A P
¢
©

straight lines are taken, produced in any manner, one VA being
given in position or remaining in the same site, the other BP passing
through a given point P, and varying in position while the point P
remains fixed; at first indeed converging toward the line VA and
meeting it in the point C; then, as the angle of inclination VCA
is continually diminished, meeting VA in some more remote point
(C), until at length from BP, through the position (B)P, it comes
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to BP, in which the straight line no longer converges toward VA,
but is parallel to it, and C is an impossible or imaginary point.
With this supposition it is permissible to include under some one
general reasoning not only all the intermediate cases such as (B)P
but also the ultimate case BP.

Hence also it comes to pass that we include as one case ellipses
and the parabola, just as if A is considered to be one focus of an
ellipse (of which V is the given vertex), and this focus remains
fixed, while the other focus is variable as we pass from ellipse to
ellipse, until at length (in the case when the line BP, by its inter-
section with the line VA, gives the variable focus) the focus C
becomes evanescent™ or impossible, in which case the ellipse passes
into a parabola. Hence it is permissible with our postulate that a
parabola should be considered with ellipses under a common rea-
soning. Just as it is common practice to make use of this method
in geometrical constructions, when they include under one general
construction many different cases, noting that in a certain case the
converging straight line passes into a parallel straight line, the
angle between it and another straight line vanishing.

Moreover, from this postulate arise certain expressions which
are generally used for the sake of convenience, but seem to con-
tain an absurdity, although it is one that causes no hindrance,
when its proper meaning is substituted. For instance, we speak of
an imaginary point of intersection as if it were a real point, in the
same manner as in algebra imaginary roots are considered as ac-
cepted numbers. Hence, preserving the analogy, we say that, when
the straight line BP ultimately becomes parallel to the straight line
VA, even then it converges toward it or makes an angle with it,
only that the angle is then infinitely small; similarly, when a body
ultimately comes to rest, it is still said to have a velocity, but one
that is infinitely small; and, when one straight line is equal to
another, it is said to be unequal to it, but that the difference is
infinitely small; and that a parabola is the ultimate form of an
ellipse, in which the second focus is at an infinite distance from the
given focus nearest to the given vertex, or in which the ratio of
PA to AC, or the angle BCA, is infinitely small.

Of course it is really true that things which are absolutely
equal have a difference which is absolutely nothing; and that
straight lines which are parallel never meet, since the distance

78 The term is here used with the idea of ‘“vanishing into the far distance.”
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between them is everywhere the same exactly; that a parabola is
not an ellipse at all, and so on. Yet, a state of transition may be
" imagined, or one of evanescence, in which indeed there has not yet
arisen exact equality or rest or parallelism, but in which it is
passing into such a state, that the difference is less than any assign-
able quantity; also that in this state there will still remain some
difference, some velocity, some angle, but in each case one that is
infinitely small; and the distance of the point of intersection, or
the variable focus, from the fixed focus will be infinitely great,
and the parabola may be included under the heading of an ellipse
(and also in the some manner and by the same reasoning under the
heading of a hyperbola), seeing that those things that are found to
be true about a parabola of this kind are in no way different, for
any construction, from those which can be stated by treating the
parabola rigorously.

Truly it is very likely that Archimedes, and one who seems
so have surpassed him, Conon, found out their wonderfully elegant
theorems by the help of such ideas; these theorems they completed
with reductio ad absurdum proofs, by which they at the same time
provided rigorous demonstrations and also concealed their methods.
Descartes very appropriately remarked in one of his writings that
Archimedes used as it were a kind of metaphysical reasoning
(Caramuel would call it metageometry), the method being scarcely
used by any of the ancients (except those who dealt with quad-
ratrices) ; in our time Cavalieri has revived the method of Archi-
medes, and afforded an opportunity for others to advance still
further. Indeed Descartes himself did so, since at one time he
imagined a circle to be a regular polygon with an infinite number
of sides, and used the same idea in treating the cycloid; and Huy-
gens too, in his work on the pendulum, since he was accustomed
to confirm his theorems by rigorous demonstrations; yet at other
times, in order to avoid too great prolixity, he made use of infini-
tesimals; as also quite lately did the renowned La Hire.

For the present, whether such a state of instantaneous transi-
tion from inequality to equality, from motion to rest, from con-
vergence to parallelism, or anything of the sort, can be sustained
in a rigorous or metaphysical sense, or whether infinite extensions
successively greater and greater, or infinitely small ones successively
less and less, are legitimate considerations, is a matter that I own
to be possibly open to question; but for him who would discuss
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these matters, it is not necessary to fall back upon metaphysical
controversies, such as the composition of the continuum, or to
make geometrical matters depend thereon. Of course, there is no
doubt that a line may be considered to be unlimited in any manner,
and that, if it is unlimited on one side only, there can be added
to it something that is limited on both sides. But whether a straight
line of this kind is to be considered as one whole that can be re-
ferred to computation, or whether it can be allocated among quan-
tities which may be used in reckoning, is quite another question
that need not be discussed at this point.

It will be sufficient if, when we speak of infinitely great (or
more strictly unlimited), or of infinitely small quantities (i. e., the
very least of those within our knowledge), it is understood that
we mean quantities that are indefinitely great or indefinitely small,
i. e., as great as you please, or as small as you please, so that the
error that any one may assign may be less than a certain assigned
quantity. Also, since in general it will appear that, when any small
error is assigned, it can be shown that it should be less, it follows
that the error is absolutely nothing; an almost exactly similar kind
of argument is used in different places by Euclid, Theodosius and
others; and this seemed to them to be a wonderful thing, although
it could not be denied that it was perfectly true that, from the
very thing that was assumed as an error, it could be inferred that
the error was non-existent. Thus, by infinitely great and infinitely
small, we understand something indefinitely great, or something
indefinitely small, so that each conducts itself as a sort of class,
and not merely as the last thing of a class. If any one wishes to
understand these as the ultimate things, or as truly infinite, it can
be done, and that too without falling back upon a controversy about
the reality of extensions, or of infinite continuums in general, or
of the infinitely small, ay, even though he think that such things
are utterly impossible; it will be sufficient simply to make use of
them as a tool that has advantages for the purpose of the calcula-
tion, just as the algebraists retain imaginary roots with great profit.
For they contain a handy means of reckoning, as can manifestly be
verified in every case in a rigorous manner by the method already
stated.

But it seems right to show this a little more clearly, in order
that it may be confirmed that the algorithm, as it is called, of our
differential calculus, set forth by me in the year 1684, is quite
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reasonable. First of all, the sense in which the phrase “dy is the
element of v,” is to be taken will best be understood by considering
a line AY referred to a straight line AX as axis.

Let the curve AY be a parabola, and let the tangent at the
vertex A be taken as the axis. If AX is called #, and AY, y, and
the latus-rectum is a, the equation to the parabola will be xx=ay,
and this holds good at every point. Now, let A, X=x,and , X, Y=y

A

X

2X

and from the point ,Y let fall a perpendicular ;YD to some greater
ordinate ,X,Y that follows, and let ,X,X, the difference between
A X and A X, be called dx; and similarly, let D,Y, the difference
between ,X,Y and ,X,Y, be called dy.

Then, since y=xx:a, by the same law, we have

' y+dy=xx+2xdx+drdx,:a;
and taking away the y from the one side and the xx:a from the
other, we have left

dy:dr=2x+dx:a;

and this is a general rule, expressing the ratio of the difference of
the ordinates to the difference of the abscissae, or, if the chord ,Y ,Y
is produced until it meets the axis in T, then the ratio of the ordinate
1 X,Y to T X, the part of the axis intercepted between the point
of intersection and the ordinate, will be as 2x+dx to a. Now,
since by our postulate it is permissible to include under the one
general reasoning the case also in which the ordinate ,X ,Y is moved
up nearer and nearer to the fixed ordinate ,X,Y until it ultimately
coincides with it, it is evident that in this case d+ becomes equal to
zero and should be neglected, and thus it is clear that, since in this
case T,Y is the tangent, ;X ,Y is to T,X as 2x is to a.

Hence, it may be seen that there is no need in the whole of our
differential calculus to say that those things are equal which have
a difference that is infinitely small, but that those things can be
taken as equal that have not any difference at all, provided that
the calculation is supposed to be general, including both the cases
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in which there is a difference and in which the difference is zero;
and provided that the difference is not assumed to be zero until the
calculation is purged as far as is possible by legitimate omissions,
and reduced to ratios of non-evanescent quantities, and we finally
come to the point where we apply our result to the ultimate case.

Similarly, if #*=aqay, then we have

23+ 3xxrdx+3xdxdr+dy dvdr=aay+aady,
or cancelling from each side,
3xxdx+3xdrdr+drdrdr=aady,
or 3rx+3xdr+drdy,iaa=dy:dr=X,Y:T X;
hence, when the difference vanishes, we have
dxxiaa=,X,Y:T,X. :

But if it is desired to retain dy and dx in the calculation, so that
they may represent non-evanescent quantities even in the ultimate
case, let any assignable straight line be taken as (dx), and let the
straight line which bears to (d#) the ratio of y or ,X,Y to ,XT be
called (dy); in this way dy and dr will always be assignables
bearing to one another the ratio of D,Y to D,Y, which latter vanish
in the ultimate case.

[Leibniz here gives a correction for a passage in the Acta
Eruditorum, which is unintelligible without the context.]

On these suppositions, all the rules of our algorithm, as set
out in the Acta Eruditorum for October 1684, can be proved without
much trouble.

w
A (d):r,
T —x,
z(d)x
Vi
WZ N/ X — Y
,Z ﬂv z.X a
© D Y
3X Y
P =D

Let the curves YY, VV, ZZ be referred to the same axis AXX;
and to the abscissae A,X (=#) and A ,X (=x+dx) let there cor-
respond the ordinates ,X,Y (=y) and ,X,Y (=y+dy), and also
the ordinates ,X,V (=v) and ,X,V (=v+dv), and the ordinates
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X ,Z (=2) and ,X ,Z (=2+dz). Let the chords,Y,Y,,V,V,,Z,Z,
when produced meet the axis AXX in T,U, W. Take any straight
line you will as (d)#, and, while the point ,X remains fixed and
the point ,X approaches ,X in any manner, let this remain constant,
and let (d)v be another line which bears to (d)x the ratio of y to
.XT, or of dy to dx; and similarly, let (d)v be to (d)x as v to , XU
or dv to dx; also let (d)z be to (d)x as z to ;XW or dz to dx;
then (d)#, (d)y, (d)z, (d)w will always be ordinary or assignable
straight lines.

Nor for Addition and Subtraction we have the following:

If y—2z=v, then (d)y- (d)z=(d)v.
This I prove thus: y+dy-2—-dz=v+dv, (if we suppose that as y
increases, 2 and v also increase ; otherwise for decreasing quantities,
for 2 say, —dz should be taken instead of dz, as I mentioned once
before) ; hence, rejecting the equals, namely y—2 from one side,
and v from the other, we have dy-dz=dv, and therefore also
dy-dz:dx=dv:dx. But dy:dx, dz:dx, dv:dx are respectively
equal to (d)y:(d)x, (d)z:(d)x, and (d)v:(d)x. Similarly, (d)z
:(d)y and (d)v: (d)y are respectively equal to dz:dy and dv:dy.
Hence, (d)y—(d)z, :(d)x =(d)v :(d)x; and thus (d)y-(d)z is
equal to (d)v, which was to be proved; or we may write the result
as (d)v:(d)y=1-(d)z :(d)y.

This rule for addition and subtraction also comes out by the
use of our postulate of a common calculation, when ,X coincides
with ,X, and , YT, ,YU, ;YW are the tangents to the curves YY,
VV, ZZ. Moreover, although we may be content with the assign-
able quantities (d)y, (d)z, (d)z, (d)x, etc., since in this way we
may perceive the whole fruit of our calculus, namely a construction
by means of assignable quantities, yet it is plain from what I have
said that, at least in our minds, the unassignables dx and dy may be
substituted for them by a method of supposition even in the case
when they are evanescent; for the ratio dy:dsx can always be
reduced to the ratio (d)y :(d)x, a ratio between quantities that
are assignable or undoubtedly real. Thus we have in the case of
tangents dv:dy=1-dz:dx, or dv=dy-dz.

Multiplication. Let ay=xv, then a(d)y=x(d)v+v(d)s.
Proof. ay+ady=x+dx, v+dv=rvv+xrdv+vdr+dydv;
and, rejecting the equals ay and xy from the two sides,
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ady=xdv+vdr+dx do,
or

ady xdv
=T 4 + .
dx dr  ° dv;
and transferring the matter, as we may, to straight lines that never

become evanescent, we have

a(d)y | x(d)y
— + + .
(D)x + (d)x v+ dv;
so that, since it alone can become evanescent, dv is superfluous,
and in the case of the vanishing differences, as in that case dv=0,

we have

a(d)v=x(d)v+v(d)x, as was stated,
or (d)y:(d)r=x+v,:a
Also, since (d)y :(d)x always =dy:dx, it will be allowable to sup-
pose this is true in the case when dy, dx become evanescent, and to
say that dy:dr=x+v:a, or ady=xdv+vdxr.

Division. Let z:a=v:x, then (d)z:a=v(d)x-x(d)y,:xx.
Proof z+dzia=v+dv,: x+dx;
or clearing of fractions, x2 + xdz+ 2dx + dzdx = av+adv ; taking away
the equals x2 and av from the two sides, and dividing what is left
by dx, we have
adv—xdz,:dx=2+dz,
or a(d)v—x(d)z,:dr=2+dz;
and thus, only dz, which can become evanescent, is superfluous.
Also, in the case of vanishing differences, when ,X coincides with
,X, since in that case dz=0, we have
a(d)v-x(d)z,:(d)r=2=av:x;
whence, (as was stated) (d)z=ax(d)v-av(d)x,: xx,
or (d)z: (d)x=(a:x)(d)v: (d)xr—av: xx.

Also, since (d)z:(d)x is always equal to dz:dx, on all other
occasions, it is allowable to suppose this to be so also when dz, dv,
dx are evanescent, and to put

dz:dx=axdv—-avdy,:xx
For Powers, let the equation be az=‘x‘=y" , then
(d)y _ e.xt )
(d)x  ny=t’
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and this I will prove in a manner a little more detailed than those
above, thus:

" ,—11~x + Tatar 4 T 21 22 dxdx + fﬁ}%‘{—zx—é dxdzxdx
(and so on until the factor e—e or 0 is reached)

= P Rty BT

(and so on until the factor n—# or O is reached) ;
take away from the one side @*=*x°, and from the other side y,
these being equal to one another, and divide what is left by dx,
and lastly, instead of the ratio dy:dx, between the two quantities
that continually diminish, substitute the ratio that is equal to it,
(d)y: (d)#, a ratio between two quantities, of which one, (d)z,
always remains the same during the time that the differences are
diminishing, or while ,X is approaching the fixed point ,X and
we have

= dydydy

f_ e—1 5,6—1 -2 eé:l e—2 -3
1 27N+ ————1 5 X dx + 123 22 dxdx + etc.
(d)y nn— 1 (d)y nn—1,m— (d)y
l n 2 n 3
T@rt 12 YT @x®t 123 VT (@FPY et

Now, since by the postulate there is included in this general rule
the case also in which the differences become equal to zero, that
is when the points ,X, ,Y coincide with the points ,X, ,Y respec-
tively ; therefore, in that case, putting dx and dy equal to 0, we have

€ el 7 a1 (d)y
17 =17 @«

the remaining terms vanishing, or (¢)y : (d)x = e.x*': n.y2zL,
Moreover, as we have explained, the ratio (d)y:(d)x is the same
as the ratio of v, or the ordinate ,X,Y, to the subtangent ,XT,
where it is supposed that T, Y touches the curve in ,Y.

This proof holds good whether the powers are integral powers
or roots of which the exponents are fractions. Though we may
also get rid of fractional exponents by raising each side of the
equation to some power, so that e and » will then signify nothing
else but powers with rational exponents, and there will be no need
of a series proceeding to infinity. Moreover, at any rate, it will be
permissible, by means of the explanation given above, to return to
the unassignable quantities dy and dx, by making in the case of
evanescent differences, as in all other cases, the supposition that
the ratio of the evanescent quantities dy and dx is equal to the ratio
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of (d)y and (d)x, because this supposition can always be reduced
to an undoubtable truth.

Thus far the algorithm has been demonstrated for differences
of the first order: now I will proceed to show that the same method
will hold good for the differences of the differences. For this
purpose, take three ordinates, ,X,Y, ,X,Y, ,X,Y, of which ,X,Y
remains constant, but ,X,Y and ,X,Y continually approach ,X,Y
until finally they both coincide with it simultaneously; which will
happen if the speed with which ;X approaches ,X is to the speed
with which ,X approaches ,X is in the ratio of ,X,X to ,X,X.
Also let two straight lines be assigned, (d)s always constant for
any position of ,X, and ,(d)« for any position of ;X ; also let (d)y
always be to (d)x as D,Y is to ;X ,X, oras y (i. e, ;X,Y) is to
\XT; thus, while (d)x remains always the same, (d)y will be
altered as ,X approaches ,X; similarly, let ,(d)y be to ,(d)x as
DY to X Xorasy+dy (i. e, ,X,Y) to ,X,T; thus while ,(d)»
remains constant, ,(d)y will be altered as ;X approaches ,X.

Also let (d)y be always taken in the varying line ,X,Y, and
let ,X ,0 be equal to (d)y, and similarly take ,(d)y in the line ,X,Y,
and let ,X ,0 be equal to ,(d)y. Thus, while ,X and ,X continually
approach to the straight line ,X,Y, ,X,0 and ;X ,» continually
approach it also, and finally coincide with it at the same time as

A
T
T
e N
XSV
Qo
2 2
8 X| D \
X5~

.X and ,X. Further, let the point in the ordinate ;X ,Y, which
continually approaches and with which it at last coincides, be
marked, and let it be Q; then ;XQ is the ultimate (d)y, which bears
to (d)x the ratio of the ordinate ,X,Y to the subtangent ,XT,
where it is supposed that T ,X touches the curve in Y, because
then indeed ,Y and ,Y coincide. Now, since all this can be done,
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no matter where ,Y may be taken on the curve, it is evident that
a curve QQ will be produced in this way, which is the differentrix
of the curve YY ; just as, conversely, the curve YY is the summatrix
curve of QQ, as can be readily demonstrated.

By this method, the calculus may be demonstrated also for the
differences of the differences.

Let ,X.Y, ,X,Y, ;X ,Y be three ordinates, of which the values
are v, y+dy, y+dy+ddy, and let ;X ,X (dr) and ,X X (dr+ddx)
be any distances, and D,Y (dy) and ,D,Y (dy+ddy) the differ-
ences. Now the difference between (d)y and ,(d)y, or between
XQ and ,X,Q is 8,0, and that between ,X,X and , X, X is ddxr;
also let

(d)dx: (d)r=dx:,(d)x, ™ and similarly let
(d)dy: (d)y=,08: X ,X or ,XQ: ,XT.

Now, for the sake of example, let us take ay=xv. Then we
have ady=xdv+vdx+dxdv, as has been shown above; and simi-
larly,
ady+addy=(x+dx)(dv+ddv) + (v+dv) (dr+ddx) ™

+ (dx +ddx) (dv+ddv)
=y dv+rddv+dydv+dyddv+vdr+vddy
tdvdx+dvddy+dx dv+dxy ddv
+ddvy dv+ddry ddo.

Taking away ady from one side, and »#dr+vdx +dx dv from the
other, there will be left in any case

ddy  ddy v, 2dxdv 2dv 2dxddx  ddv

ddx  addx a a ddx a a ddx a’

In this it is evident that the ratio between ddy and ddx can be
expressed by the ratio of the straight line (d)dy to (d)x, the straight
line assumed above, which we have supposed to rerhain constant
as ,X and ,X approach ,X. Also, since (d)dx, (since it bears an
assignable ratio to (d)x, however nearly ,X approaches to ,X, or

74 This makes (d)dx an inassignable. It may be a misprint due to a slip
of Leibniz, or of Gerhardt in transcription; for there is no similarity between
it and the statement in the next line. I cannot however offer any feasible
suggestion for correction.

76 This is quite wrong. Leibniz has evidently substituted x4 dx for #,
etc.; which is not legitimate unless sXsY is taken as y- dy--d(y- dy),
and so on; even then fresh difficulties would be introduced. As it stands, this
line should read

ady+ addy=x(dv+ ddv) 4+ v(dx + ddx) + (dx 4 ddx) (dv + ddv).

On account of this error and that noted above, there is not much profit in

considering the remainder of this passage.
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however much dx, the difference between the abscissae, is dimin-
ished), is not evanescent, even when, finally, d+ and ddx, dv and
ddv, are all supposed to be zero. In the same way, the ratio of
ddv to ddx may be expressed by the ratio of an assignable straight
line (d)dv to the assumed constant (d)#; and even the ratio of
dvdx to addy may be so expressed; for, since dv:dx=(d)v:(d)x,
therefore dvdridrdr=(d)v:(d)x. Hence, if a new straight
line, (dd)x, is assumed to be such that addx:dxdx=(dd)x:(d)x,
then the new straight line will be assignable, even though dx, ddx,
etc. become evanescent. Since therefore dvdx:dxdy=(d)v:(d)x
and dvdx :addr=(d)x : (dd)x, it follows that dvdx :addx=(d)v:
(dd)#, and thus at length there is produced an equation that is freed
as far as possible from those ratios that might become evanescent,
namely,

(DHdy x(@dy y 2(d)y 2dv 2dv(d)dy ddv

(@ydz —a(dydx " et x T Ta T a @yax T Ta

Thus far all the straight lines have been considered to be assign-
able so long as ,X and ,X do not coincide; but in the case of coin-
cidence, dv and ddv are zero, and we have
@Ddy x(ddv v 2(d)y 0 2(d)dv0
@iz " a(dyds "a " @dyx "2 (@ydx a
or, omitting terms equal to zero,
(Ddy _x(@do v 2 (d)y
@dx " a(@ydx "2 " @
Hence, if dx, ddx, dv, ddv, dy, ddy, are by a certain fiction imagined
to remain, even when they become evanescent, as if they were in-
finitely small quantities (and in this there is no danger, since the
whole matter can be always referred back to assignable quantities),
then we have in the case of coincidence of the point X and ,X the
equation

0
+__
a’




VI

LEIBNIZ IN LONDON.!

(BY C. I. GERHARDT.)

EIBNIZ paid two visits to London from Paris, where
he was staying from March, 1672, to October, 1676:
from the Elector of Mainz, was from January II to the
beginning of March, 1673; the second was made on his
way home to Germany, when he stopped in London for
about a week in October, 1676.

Leibniz had a habit of writing out all the important
scientific points in the correspondence that he kept up with
noted people, so that he might thus impress them the more
deeply upon his memory. I have discovered among his
manuscripts three folio sheets on which he has written
down the things worth noting in connection with these
two visits to London.” The sheets which relate to his second
visit have been known to me for some time; but the other
ones, referring to the first visit, I came across only during
my last stay in Hanover in the summer vacation of the year
1890.

In what follows, I have only paid attention to the con-
tents of these sheets which refer to mathematics.’?

1 Translated from an article by Dr. Gerhardt in the Sitzungsberichte der
Koniglich Preussischen Akademie der Wissenschaften zu Berlin, 1891, pp.
157-165, and published in The Monist for Oct., 1917. The notes are mine.

2 These highly important documents ought to be photographed and pub-
lished in facsimile.

81t seems a pity that Gerhardt has not given the contents of the section
labeled “Mechanica,” unless indeed this is all non-mathematical; there may
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The sheet relating to Leibniz’s first visit to London, of
which I have added a partial transcript under the heading
I, is divided on both pages into sections [the word used in
the original is Felder = columns, but it will be seen that,
according to the transcript given later, the sections are
horizontal and not vertical], in which Leibniz has en-
tered all that he considered to be worth noting. While
the sections labeled “Chymica,” ‘“Mechanica,” “Mag-
netica,” “Botanica,” “Anatomica,” “Medica,” and “Mis-
cellanea” are filled up with an extraordinary number of
memoranda, the first sections, which are allotted to mathe-
matical subjects, are very poorly filled. That labeled
“Geometrica” contains a note that is especially worth re-
marking: “Tangents to figures of all kinds. Development
of geometrical figures by the motion of a point in a moving
straight line.”* In all probability it may be supposed that
this refers to the lectures of Barrow, delivered on his
method of tangents at the University of Cambridge down
to the year 1669. As is well known, the method of Bar-
row is only applicable to such curves as can be expressed
by rational functions.” Newton’s name was mentioned in

be in it some intimation that would lead to a clue as to the origin of Leibniz’s
use of the word moment, meaning thereby, not Newton’s use of the word, but
the idea now familiar to us in the determination of the center of gravity of
an area, expressed by the equation
x = Zax/Za,

where o is the element of the area distant x# from the axis, # the distance of
the center of gravity from that axis, and Zax is the sum of the ‘first moments
of the elements’ or ‘the first moment of the whole area.’” See Note 18, below.

4 “Tangentes ommium figurarum. Figurarum geometricarum explicatio
per motum puncti in moto lati”

5In a footnote, Gerhardt asserts that “Barrow’s Lectiones Geowmetricae
appeared in 1672.” This is incorrect; for they were published, combined with
the second edition of the Lectiones Optice, in 1670; nor can Gerhardt be referring
to the second edition, for that appeared in 1674 and then as a separate volume.
Also, I have, in the little book on The Geometrical Lectures of Isaac Barrow,
published by the Open Court Publishing Co., given reasons for supposing that
these lectures were never delivered as Lucastan Lectures, though they may
have formed the subject—matter for college lectures at Gresham and Trinity.
Again, it is not true, although “well known,” that “the method of Barrow was
only applicable to such curves as can be expressed by rational functions”;
this remark is even only partially true about the differential triangle method
for, as I have shown in the above-mentioned book, Barrow had a complete
calculus, which included, among other things, the important idea of substitu-
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the “Optica.” Leibniz has the remark: “They told me
about a certain phenomenon that Barrow confessed he
was unable to solve. Newton’s difficulty has so far not
been solved, Father Pardies having given it up.”® Ob-
viously this remark applies to Newton’s experiment on the
refraction of light by a prism and to the decomposition of
white sunlight, and especially to the fact that a circular
solar image becomes after refraction a long spectrum.
Father Pardies of Clermont had published in opposition
to Newton his “Two Letters containing Animadversions
upon I. Newton’s Theory of Light,” in the Philosophical
Transactions of 1672, together with a letter from Newton.

It cannot be said for certain that Leibniz, during his
first stay in London, met with any of the great English
mathematicians; Wallis lived at Oxford, while Barrow and
Newton resided at Cambridge.” Indeed, it is made a matter
of plaint by Brewster, the biographer of Newton, that the
Royal Society of London at that time numbered few men
of distinguished talents who were in a position to perceive
the truth of the optical discoveries of Newton. In the
letter which Leibniz addressed to Oldenburg, the Secretary
of the Royal Society, during his visit to London, he men-

tion, which is all that is necessary to complete the “a-and-¢” method and make
it applicable to surds and fractions, and probably was thus applied by Barrow
in working out his constructions; but the whole thing was geometrical, which
apparently hid the inner meaning until recently.

To my mind, the mention of but “tangents and local motion” points out
that, on Leibniz’s first reading of Barrow, he only perused at all carefully the
first five lectures, which are relatively unimportant; or rather it confirms an
opinion I had already expressed to Mr. P. E. B. Jourdain: see Note 43, p. 218.

8 “Locuti sunt mihi de phaenomeno quodam quod Barrovius fatetur se sol-
vere non posse. Newtoni difficultas soluta hactenus non est, P. Pardies manus
dante.”

71t seems however that Leibniz attended the meetings of the Royal So-
ciety; at any rate once, when he exhibited the model of his calculating machine.
It would be interesting if the roll of members present on all occasions during
this period could be obtained, as doubtless they were kept. For such men as
Ward were members at the time and attended the meetings, and Ward was,
if not in the same class as the three whose names are given, an excellent math-
ematician; and, Leibniz, being somewhat of a notable, on account of his con-
nection with the Embassy from Mainz, would surely be introduced to all emi-
nent members present.
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tioned that he had met by accident the mathematician Pell
at the house of Boyle, the chemist. The conversation fell
upon those number-series which in elementary mathematics
were called the higher arithmetical series and whose sums
and terms were found by the help of differences. Leibniz
showed that he had gone deeply into the study of such
series and had partly found out some new methods for
calculating the terms.®* Leibniz’s letter to Oldenburg was
dated Feb. 3, 1673 (1672 O. S.).°

From the preceding it appears that what Leibniz learned
with reference to mathematics from his first visit to Lon-
don was quite unimportant.’® The chief aim of his stay in
London was to be elected as a Fellow of the Royal Society ;
and this came to pass, owing in part to an exhibition of a
model of his calculating machine, and in part to the friendly
offices of Oldenburg.

After his return to Paris at the beginning of March,
1673, Leibniz was able to find more leisure to follow up
his studies without hindrance; the political mission which
was the cause of his being sent to Paris, was now at an
end.

It may be regarded as certain that, before his first visit
to London, Leibniz made the personal acquaintance of the
men with whom he corresponded before he came to Paris,
and especially Antoine Arnauld and de Carcavi. The

8 The account given by Leibniz himself in the Historia (see above, Chap-
ter IIT, p. 36) reads thus: “He” [for Leibniz wrote in the third person,
under the guise of “a friend who knew all about the matter”] “also came
across Pell accidentally, and described to him certain of his own observations
on numbers, and the latter stated that they were not new, but it had been
recently made known by Nikolaus Mercator.... This made Leibniz get the
work of Nikolaus Mercator,” As a matter of fact the suggested plagiarism,
or what Leibniz took for such a suggestion, was from Mouton and not from
Mercator. This is an instance of the lack of memory from which Leibniz
suffered; such lack as caused him to make notes of all important points.

9 See Note 32, p. 171, on the introduction of the Gregorian calendar.

10 T cannot see what reason Gerhardt has for this statement, considering
the contents of Barrow’s book, which we know that Leibniz had purchased;
that is, unless we assume either that Leibniz, as I have suggested, did not at
that time read the whole of Barrow, or failed to grasp what Barrow had given
owing to his (Leibniz’s) incomplete knowledge of geometry.
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latter belonged to the circle in which Pascal moved.
Whether at that time Leibniz had made the acquaintance
of Huygens is not quite so certain; at any rate he did not
come into close relations with him until after his return
from London. Huygens presented him with a copy of his
great work, Horologium Oscillatorium, which had just
(1673) been published. The recognition that his mathe-
matical knowledge at that time was insufficient to enable
him to understand the contents of this book, combined with
a reawakening of his former love for mathematics, had the
effect of making Leibniz devote himself with the greatest
fervor to the study of mathematical subjects. Cavalieri’s
method of indivisible magnitudes, the writings of Gregory
St. Vincent, the letters of Pascal (which were especially
recommended to him by Huygens), were used by him as
guides in his studies. As the first-fruits of these studies,
he obtained the theorem that, when the square on the
diameter of a circle was taken as unity, the area of the
circle was expressed by the infinite series
1_%+%-_%+ ........ ad inf. @

He obtained it thus: Instead of dividing the circle, as in
the method of Cavalieri, into trapezia by means of parallels,
he divided it into triangles by lines radiating from a point;
the areas of these triangles being proportional to certain
lines. With these lines as perpendicular ordinates a curve
could be constructed that was divided by these ordinates
into trapezia, each of which is double the corresponding
triangle. In this way Leibniz obtained a curvilinear fig-
ure' whose area was double that of the circle, but which
was expressed by a rational function, = y?/(1 + »?),”

11T eibniz’s own date for the discovery of this result, usually alluded to
by him as the “Arithmetical Tetragonism,” is 1674; “But in the year 1674 (so
much it is possible to state definitely) he came upon the well-known Arith-
metical Tetragonism;....” (see above, Chap. III, p. 42).

12 See the first critical note, pp. 172ff.

13 See the first critical note, pp. 172ff.
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of its coordinates; and, using a method that was similar
to that employed by Mercator for the equilateral hyperbola,
this area could be found (Quadratrix).™

For the rest of Leibniz’s treatment, see the hitherto
unpublished manuscript, given under II in the appendix
that follows.

As was often the case in the first scientific studies of
Leibniz, intimations of the great problems that occupied
his attention his whole life through are found here in his
first efforts in the domain of higher mathematics. First
is it to be remarked that Leibniz abandoned the division
of curvilinear figures into trapezia, as employed by Cava-
lieri, and instead divided them into triangles; from this
he was led to the “characteristic triangle,”** which formed
the foundation in the application of the differential calculus.
Further, Leibniz constructed, instead of the proposed curve,
another of which the area could be found (the “quadratrix”
as he called it) ; this method of procedure frequently oc-
curs in the later works of Leibniz on the integral calculus.
Closely connected also with this is the solution of the in-
verse method of tangents, that is, given the tangent, to
find the curve.

In these first efforts of Leibniz in the domain of higher
mathematics is clearly to be seen the influence of his study
of the writings of Pascal.” The French mathematicians
Roberval and Pascal did not consider that Cavalieri’s

14 Observe that Leibniz (or Gerhardt) employs this word in a different
sense from that of Barrow, with whom it means the special curve whose equa-
tl_on1 is 9y = (r — x)tan mx/27, a curve that is particularly connected with the
circle. :

15 This contradicts both Gerhardt and Leibniz himself, who said that he
got it from a consideration of a figure used by Pascal in finding the content
of the sphere. See also the first critical note, pp. 172f.

16T will consider this influence in connection with an essay by Gerhardt
on this very point in the following chapter, when I shall endeavor to substan-
tiate an opinion I have formed with regard to the earlier manuscripts of Leib-
niz, which were discovered by Gerhardt, and of which translations are given
above, on pp. 59-114. I suggest that these do not represent so much the record
of his original investigations as notes made while using the works of his prede-
cessors as text-books.
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method was consistent with the rigorous requirements of
mathematics;" they reverted to the study of the Greek
mathematicians, and especially to the writings of Archi-
medes, combining with their method the developments
which Kepler, in particular, had brought about by the in-
troduction of infinitely small magnitudes into geometry.
Moreover, in connection with Pascal, it is to be observed
that he generalized into a “barycentric calculus” the proce-
dure used by Archimedes for the quadrature of the parab-
ola by means of the equilibrium of the lever.” This
‘calculus” enabled him to solve problems on the cycloid
which his contemporaries had vainly attempted.” It was
not unknown to Leibniz that, since the time of Pappus of
Alexandria, quadratures and cubatures had been calcu-
lated by the aid of the center of gravity (Guldin’s rule,
“Centrobaryca’) ; certainly he was now led, by the works
of Pascal, again to notice the methods for the determina-
tion of the center of gravity, and was also induced to at-
tempt to extend and perfect them. The manuscript of

17T fail to see how this statement can be completely reconciled with the
z(lyggging well-known quotation from the “Lettre de A. Dettonville ¢ Carcavy”
“I’ay voulu faire cét advertissement pour wmonstrer que tout ce qui _est
demonstré par les veritables regles des mdwzszbles se demonstrera aussi & la
rigueur et @ la maniere des anciens,; et qu'ainsi Pune de ces Methodes ne differe
de lautre qu'en la manieve de parler; ce qui ne peut blesser les personnes
raissonnables quand on les a une fois avertyes de ce qu’on entend par la” (Vol
VIII, p. 352).

Pascal also says on p. 350: “.... la doctrine des indivisibles, laquelle ne
peut estre rejettée par ceux qui pretendent avolr rang entre les Geometres.”

That is, the method of indivisibles does not differ from the method of
exhaustions, except in the way the argument is put; and that the former must
be accepted by any mathematician with pretensions to rank among geometers.

The page reference is to the edition of Pascal’s Works in 14 volumes, in
t115e14s)eries, Les Grands Ecrivains de la France (pub. Hachette et Cie., Paris,

18 Pascal calls it “la balance.” It is worth noting in this connection that
Pascal uses the word “force” and not “moment” for the product of one of his
weights and its lever-arm; so that we must look elsewhere for the clue to the
use of the word “moment” in this sense by Leibniz.

19 Several of the problems proposed were solved by Huygens, de Sluse,
and Wren; but by special methods, which did not satisfy Pascal, who called
for a general method. Later (1670) Barrow gives the rectification of the arc,
as a spef;al) case of a general theorem (Lect. XII, App. 3, Ex. 2, see my Bar-
row, p. 177
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Leibniz which is dated October 25, October 26, October 29,
November 1, 1675, and which contains the investigation
on the center of gravity, is headed, “Analysis Tetragonis-
tica ex Centrobarycis.”®

Tt is worth remarking that in this Leibniz continues
the method by which he had found the series for the area
of the circle. Incidentally these studies were the first occa-
sion for the introduction of the symbol for a sum, 1. e., the
integral sign (October 29, 1675); from this as the an-
tithesis, the sign for the difference, 1. e., the symbol for
differentiation, resulted.®® The equation in which Leibniz
first introduced the sign of integration was, in the notation
of that time:

omn. /[ omn. *

M omn. omn. —
a

that is,

(omn./)? .
——"/ = omn. omn. =
a

for which Leibniz writes
J 7 (1
3 m j.f Z.E
that is, when /= dy, '
v_1(,
5= af ly Jdy

After his return to Paris in March, 1673, Leibniz was
in constant communication with Oldenburg, the Secretary
of the Royal Society; the subjects being almost entirely
mathematical. In this way he obtained his knowledge
of the work of the English mathematicians. Oldenburg’s
mentor on all mathematical questions was John Collins,
who possessed a very wide acquaintance among English

20 See pp. 65fF.

21 See the second critical note, p. 179.
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mathematicians; and it was through him that what they
had done was communicated. In this respect special men-
tion is to be made of the letter from Oldenburg to Leibniz,
dated July 26, 1676, in which Collins informed him of a
collection of letters from English mathematicians that he
had in his possession. Collins mentions in it particularly
that script of Newton, of December 10, 1672, in which the
latter makes a communication about his method for tan-
gents to curves, which are given by an explicit algebraical
equation; he remarks that the method is only a corollary
to a general procedure for solving other problems, such
as those relating to rectification, determination of centers
of gravity and so on.”® Collins stated in addition that, be-
sides what this letter showed, nothing further was known
at that time about Newton’s method. It was on account of
these communications, and probably also on account of a
letter from Newton to Oldenburg, of which Oldenburg sent
a copy to Leibniz at Paris, that Leibniz was moved to make
his return journey to Germany in October, 1676, by way of
London. Leibniz stayed there about a week; he made the
acquaintance of Collins, who willingly let him have access
to his collection of treatises and letters.”” What Leibniz
found in them that he thought worth noting he set down

22 Leibniz, in the Acta Eruditorum for the year 1700, says, “I can affirm
that, when in 1684 I published the elements of my Calculus, I did not know
any thing more of Mr. Newton’s inventions in this kind, than what he formerly
signified to me by hlS letters, viz., that he could find tangents without taking
away surds;....” As Newton says in the article in Phil. Trans., Vol. XXIX,

No. 342, Anno 1714 (usually called the ¥Recensio”) this “is very extraordmary,
and wants an explanation.”

23 This is feasible, but there is another alternative given by Dr. H. Sloman
(The Claim of Leibniz to the Invention of the Differential Calculus, English
edmon, pub. Macmillan, 1860), which strikes me as even more probable Slo-
man’s points are as follows: (1) It is highly probable that Leibniz’s week in
London was the last week of that month. (2) Oldenburg had then in his
possession two letters from Newton for Leibniz, dated Oct. 24 and 26; these
he showed to Leibniz. (3) As Newton himself mentions, these were blotted
and hastily written; and thus Leibniz asks, on this account, that Oldenburg
should let him see the tract of Newton to which they refer; which tract Leibniz
knew was in the possession of Oldenburg, that is, a copy of it. For the details
of the argument, occupying ten quarto pages, see the above-mentioned book
by Sloman, pp. 97-106.
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on two folios; the one has the heading, “Excerpta ex trac-
tatu Newtoni de Analysi per aequationes wumero termi-
norum infinitas.” This is the paper which Newton sent in
June, 1699, to Barrow, from whom Collins received it on
July 30, 1699. Collins made a copy of it, and sent the
original back; and the original was printed in the year
1711. The other sheet has the heading, “Excerpta ex Com-
mercio Epistolico inter Collinium et Gregorium.” A partial
transcript of both these sheets follows under the head-
ing III.

With regard to the extracts from Newton’s paper, it
is to be remarked that Leibniz was interested in the treat-
ment of algebraical expressions of powers and in the turn-
ing of irrational expressions into the form of series by
means of division and root-extraction. He noted indeed
many examples in their entirety. How to get to quadra-
tures was known to him; he merely indicated the process
by the sign of a sum, i. e., by the symbol of integration.
On the other hand, the part on the numerical solution of
adfected equations was new to him, and this he copied out
well-nigh word for word; this is the well-known New-
tonian method of solution of equations by approximations.
Leibniz passes over as well known to him the remark, made
by Newton at the close of the quadratures, that the prob-
lems of rectification, determination of the content of solids,
determination of the centers of gravity, can be solved in
the same way, and also the general indication of the process
to be followed in such cases. Then follows the solution of
inverse problems, for instance, to find from the area the
base, that is the axis of the curve. This Leibniz copied
out word for word. In the same way Leibniz has extracted
the conclusion of Newton’s paper, “Demonstratio resolu-
tionis aequationum affectarum.” At the end of his manu-
script Leibniz adds: “I extracted this from the letter of
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Newton, August 20, 1672, addressed to Newton.”* Prob-
ably this means that from the letters referring to Newton,
Leibniz picked out the letter dated August 20, 1672, ad-
dressed to Newton.”” So far as the script can be de-
ciphered,” its contents were a graphic representation of
Newton’s method of solution of equations by approxima-
tions by means of Gunter’s scale. Gunter’s line had been
noted by Leibniz on his first visit to London.

Of quite special interest to Leibniz were the letters of
mathematicians which Collins had collected; on a second
folio he made excerpts from letters from James Gregory.
In two letters from Gregory (1670) was Isaac Barrow
extolled as the greatest, not only among living writers,
but also among all those that had written before him
(Barrow). Further Leibniz found among these letters the
letter mentioned above of Newton to Collins of December
10, 1672;" he extracted what Newton had mentioned with
regard to his method of finding the expression for the tan-
gent to a curve. Leibniz added at the end of this extract,
“This method differs from that of Hudde as well as from
that of Sluse, in that irrationals need not be eliminated.”*®

24 The Latin, “Excerpsi ex Epist. Neutoni 20 Aug. 1672 ad Neuton,” as
given by Gerhardt, seems somewhat unintelligible; especially the word Neuton.
What Collins had (or what Oldenburg, as suggested by Sloman, had) was a
copy of a manuscript that Newton had sent to Barrow. Gerhardt says, “so
far as the script can be deciphered”; perhaps the word Neuton is an error
of transcription, or maybe an error on the part of Leibniz, due to the juxta-
position of the Neutoni which comes just before. In any case, Note 25 applies.

25 ] do not think Gerhardt’s translation of the word excerpsi is correct.

26 Gerhardt does not state whether the extract is badly written (this would
show that it had been done in a very great hurry, for Sloman says that Leibniz,
in his matter for publication, wrote a beautiful hand), or whether spoilt by
age; in the latter case, as old-time inks contained salts of iron, the manuscript
might be restored by photography, by means of a special plate, that I under-
stand is sometimes used for detecting forgeries in deeds and notes.

27 The letter was sent to Barrow to be sent on to Collins, probably with
the object of being communicated through the latter to others; Collins seems
to have been the regular channel of communication at this period, in a similar
way to Mersenne,

28 So we find in a manuscript, dated July 11, 1677, first of all an allusion

to Sluse’s method of tangents, “in which the equation is purged of irrational
or fractional quantities”; then the remark, “I have no doubt that the gentlemen
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From these extracts it follows that the contents of New-

ton’s letter were unknown to him at that time (Oct., 1676).”

Regarding the verbal communications that Leibniz

had from Collins during the second stay in London, Collins

wrote to Newton from London on March 5, 1677 (1676

0. S.), that the representation of the roots of an equation
by a series was discussed between them.

It is clear that Leibniz during his second stay in London
had made himself more familiar with the results obtained
by English mathematicians than he was before. The ques-
tion now arises: What specially occupied his attention?
What had particular influence upon his studies? It is seen
that what Leibniz found in Collins’s collection relating to
algebraical analysis was new to him and excited his in-
terest; also the verbal exchange of ideas between himself
and Collins was upon the same subjects.

On the other hand, as regards the infinitesimal calculus,
Leibniz obtained nothing during his second visit to Lon-
don; he had made a progress, by the introduction of his
algorithm into the higher analysis, beyond anything that
came to his knowledge in London.* Also these algebraical
results, at least for the next period, left behind no lasting
impression; for among Leibniz’s papers is to be found an
extensive treatise, written on board the ship that carried
him from London to Holland, wherein he considered the
I have just mentioned know the remedy that is necessary to apply”; then fol-
lows the rule for a quotient, and the remark that this will be sufficient for
fractions ; lastly the rule for powers, with the remark that this will be sufficient
for irrationals. Later, he says, “This method has more advantage over all
others that have been published than that of Slusius over all the rest, because
it is one thing to give a simple abridgment of the calculation, and quite another
thing to get rid of reductions and depressions.”

Thus, after the sight of Newton’s paper, his whole business has been to
improve the method of Sluse.

201 read it quite otherwise; he has had information of some kind, whether
from Oldenburg direct or from Tschirnhaus, while in Paris, and visits London
with the express intent of seeing the original papers.

30 See the third critical note, p. 181.
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fundamental principles of motion, in the form of a dia-
logue.”

It was in the letter to Oldenburg written from Amster-
dam on November 18/28, 1676, which Collins spoke of
in the letter to Newton mentioned above, that Leibniz first
refers to the subject of the problem of tangents, and re-
marked that the method of Slusius was not yet very per-
fect.”

81 Could this possibly have had its rise in an effort on the part of Leibniz
to understand fluxions, or rather the idea of fluxions as he had found it in
Newton’s paper?

321n 1582, Gregory XIII had directed 10 days to be suppressed from
the calendar, then in accordance with the Julian system of intercalation, in
order to allow the error which had crept into the time of the vernal equinox,
by which Easter-day was settled, to be put right. The Gregorian calendar
was introduced into all Catholic countries the same year, in Scotland in 1600,
in the protestant states of Germany in 1700, but not in England until 1752, At
the same time the commencement of the legal year in England was altered
from May 25 to January 1; thus we frequently find two years given for dates
between January 1 and May 25; while there are two days of the month given
for all months of the year, For instance, February 1673 in the new Gregorian
calendar would be only February 1672 in the Julian, dlstmgulshed by the letters
0.S. (Old Style) and this date was written February 167*/s. Similarly the
date November /23, 1676, was the 28th of November in the New Style, and
the 18th in the Old Style, the number of the year being the same, since the day
did not lie between the 1st of January and the 25th of May.

83 “Methodus Tangentium a Slusio publicata nondum rei fastigium tenet.”
These are Leibniz’s words; Gerhardt omits to translate the word publicata,
which probably refers to the publication in the Phil. Trans. of 1672, by Slusius,
of the rules of his method, illustrated by examples. Sluse had probab]y im-
proved upon this before 1676, but there is no evidence on this point. It would
seem as if the subsequent work by Leibniz, culminating in the manuscript of
July 11, 1677, was largely an attempt to perfect the rule of Sluse as a rule,
and that Lelbmz, if ever, did not appreciate the idea fundamental in the cal-
culus, namely that of rates, until very much later.
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CRITICAL NOTES ON GERHARDT’S ESSAY.
Norte I. The origin of Leibniz’s “transmutation of figures.”
(Referred to in footnotes 12, 13, 15.)

In the manuscript, which follows under heading II, Leibniz
appears to attach very considerable importance to the method of
transmutation of figures, and to claim that he had originated it.
This claim is not incontestible ; indeed I am almost inclined to think
it is a deliberate plagiarism to start with; but Leibniz has perceived
in it something which the original author did not. Can it by any
chance be the case that, in conformity with several other instances
of Leibniz’s bad memory for details, he is confusing author and
subject, when he speaks of “the great light that suddenly dawned
on him, which the author had missed,” the reference being to Pascal
and the discovery of the differential triangle? Can it be that the
true connection is that in considering the original work of the author
of such transmutations of figures, he perceived the method for the
arithmetical quadrature? For here he really has found a thing that
the author missed though it was almost staring him in the face,
his discovery being due to a habit that Leibniz had of writing down
everything that he could get out of any particular figure or bit of
work that he had in hand, whether it was relevant or irrelevant.

Wallis and Pascal had both hinted at the method, i. e., had used
it in special cases, namely for proving the equivalence of the parab-
ola and the spiral ; and Leibniz was familiar with both these authors.
Again, James Gregory had, in the words of Barrow (Lect. Geom.,
Lect. XTI, App. 3, foreword to Prob. IX), “set on foot a beautiful
investigation about involute and evolute figures,” i. e., polar and
rectangular figures equal in area to one another. Of course, Leib-
niz may not have seen this work of Gregory until later; probably
not, although in one of his manuscripts he gives a theorem of
Gregory ; this however does not count for much, for the very same
theorem is given by Barrow (see my Barrow, p. 130) and we know
that Leibniz had a Barrow in his possession. This book, judging
by his words, “as in Barrow, when his Lectures appeared, in which
I found the greater part of my theorems anticipated,” Leibniz wishes
to make his friends believe was the 1674 edition, and not the edition
of 1670, which he bought on his first visit to London. Why did
Leibniz wish to conceal this fact? I assert that the reason for doing
so was the fear that seemed always to overshadow him, the fear of
being accused of plagiarism, whether such was a true or a false
charge. I am firmly convinced that Leibniz got his transmutation
of figures from Barrow ; to this conclusion I have only just come, it
never having entered my head to look for it at the time that I wrote
my articles for The Monist of October, 1916, April and July, 1917.
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Before I bring forward my arguments, it is right to state as a
preliminary that, just as in calculus nowadays we usually draw a
curve with its convexity downward, and draw the tangent to meet
the horizontal axis beneath the curve, so Barrow drew his curves
with the concavity downward in many cases, mostly, I think, in
order to fit the diagrams conveniently on the old-fashioned folding
plates of diagrams, that in those days were added in batches at
the end of a book (see a specimen I have given at the end of my
Barrow) ; in other cases, he drew his figure on the left-hand side
of the axis. Whichever figure he drew, he always did one thing,
namely, he drew any supplementary figure he had need of on the
other side of his axis or base. Leibniz almost invariably drew
his curve on the right-hand side of a vertical axis, and supplemen-
tary figures on the same side. Hence, in the extract from Barrow
given below, I'am to be excused for failing to notice before what
is more than a mere similarity.

In the following extract from Barrow (Lect. XI, Prop. 24),
I have added Barrow’s proof, which I thought unnecessary to give
in my book ; the figures given are Barrow’s own on the left, which
has been “up-ended” on the right; the latter is to be compared with
the several figures by Leibniz.

Barrow's Lectiones Geometricae, Lect. X1, Prob. 24.
If DOK is any curve, D a given point on it, and DK any
chord; also if DZI 1is a curve such that when any point M is taken
in the curve DOK, DM is joined, DS is drawn perpendicular to

T
S

Fig. 1. Fig. 2.

DM, MS is the tangent to the curve, DP is taken along DK equal
to DM, and PZ is drawn perpendicular to DK, so that PZ is equal
to DS ; in this case the space DZI is equal to twice the space DKOD.
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For let KP be considered to be indefinitely small, and let DT
be perpendicular to DK and KT the tangent to the curve DOK.
Then, drawing the arc MP, we have as before,

KP:PM=KD:DT=KD:KI, and hence KP.KI=PM.KD.
Take another small part PQ and, with center D, draw an arc QN
through Q cutting the chord DM in R ; then as before,

MR:RN=MD:DS, PQ:RN=MD:PZ, PQ.PZ=RN.MD;
and so on one after the other. Therefore, it is evident that the
sum of all the rectangles KP.KI, PQ.PZ, etc,, is equal to the ag-
gregate of all the spaces PM.KD, RN.MD, etc.; that is, the space
DKI=2 times the space DKOD.

The words I have italicized refer to Prop. 22, in which he uses
a similar though rather more complicated figure to reduce a polar
area to a rectangle of which one side is a given straight line, and
explains that the reasoning depends on the fact that the line DK is
divided into infinitely small parts. Compare the words I have ital-
icized with the description of Leibniz’s method: “the areas of these
triangles being proportional to lines.

Further, Barrow proceeds in Prop. 25 to prove the equivalence
of the spaces formed (i) by applying each MS to the base and (ii)
by applying each chord to the arc, previously rectified. And he winds
up with the words: “Should any one explore and investigate this
mine, he will find very many things of this kind. Let him do so
who must, or if it pleases him.”

T

Fig. 3. Fig. 4.

This all suggests that Leibniz did explore this mine, that he
did not invent the method of transmutation of figures for himself,
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that he did find very many things of this kind, and that Barrow had
missed the arithmetical quadrature construction; this Leibniz ob-
tained through his regular practice of working every mine right
out, to keep up Barrow’s simile. Further comment is needless, I
think, after a comparison of Barrow’s figure (the up-ended version)
with the figures of Leibniz given above.

Fig. 3 occurs in a manuscript November 21, 1675, which ac-
cording to Leibniz is at least a year after he had discovered the
arithmctical quadrature; and yet it has a heading, “A new kind of
Trigonometry of indivisibles, etc.” In this figure it is to be noticed
that he has the perpendicular to the chord BC, agreeing with Bar-
row’s DS and DT, but has not the tangent at the vertex that was
necessary for the demonstration of the arithmetical quadrature. In
the working in connection, he considers the similarity of all the tri-
angles possible, and notes as one point that “the sum of all the tri-
angles or the area of the figure is equal to the products of the AB’s
into the CE’s, which is Barrow’s proof of Prop. 24 above.

Fig. 4 is the figure given in the Historia (see above, Chap. III.
p. 42) in connection with the explanation of how he found the area
of the circle. Notice the difference between this figure and the
one given in the manuscript that follows under the heading II, also
that the description there given of the way in which he was led to
it is much more natural. This is probably the true version, for the
use of the notation B, (B), ((B)), points out that it was written
at a comparatively early period, before Leibniz had adopted the pre-
fix notation, ,B, ,B, ;B. In the account in the Historia, to which
Fig. 4 applies, Leibniz says, “he once happened to have occasion to
break up an area into triangles formed by a number of straight lines
meeting at a point, and he perceived that something new could
be readily obtained from it.” I suggest that the occasion was most
probably while he was digging in Barrow’s mine! This is the reason
why he has in the Historia given the figure more according to his
usual practice, and different from the figure in the earlier manu-
script, which is too much like a copy of Barrow’s (query, where did
Barrow get it from?). With regard to the figure and proof in the
manuscript which follows, we find that the reasoning there given is
unsound, unless Gerhardt has given us a slightly erroneous diagram;
for Leibniz apparently does not perceive that the ordinates BA,
which are equal to the corresponding CE, must pass through the
respective points D, before he can say that one figure is double the
other. Hence I conclude that at the date of this manuscript, the
demonstration was imperfect and that he had no proof until he dug
in Barrow’s mine; in support of which conclusion I will quote from
the Recensio, mentioned in Note 22, p. 167: “This quadrature, com-
posed in the common manner, he began to communicate at Paris in
the year 1675. The next year he was polishing the demonstration
of it, to send it to Mr. Oldenburg, in recompense for Mr. Newton’s
Method as he wrote to him May 12, 1676; and accordingly in his
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letter of August 27, 1676, he sent it, composed and polished in the
common manner.” This polishing, I-take it, consisted in making
the slight but important alterations in the demonstration and figure,
from those given in the manuscript II that follows, to those given in
the Historia.

What had he then got in July 1674, when he wrote to Olden-
burg saying that he had got a wonderful Theorem, which gave the
area of a circle, or any sector of it exactly, in a series of rational
numbers? Or, when in the October following, October 26, 1674,
he wrote to say that he had found the circumference of a circie in a
series of very simple numbers; and also by the same “method” (a
favorite expression of Leibniz) any arc whose sine was given?
It was impossible that Leibniz could have had the two things that
I have italicized; or at least, the latter was impossible to him, be-
cause the only way for him to obtain it exactly, i. e., to know the
law of his series, was as yet unknown to him; unless we are to as-
' sume, contrary to his assertion, that the binomial theorem was
known to him, which would involve his also having seen or been
told about other parts of Newton’s work. The only way open to
Leibniz was to find the square root of 1-42, and then its reciprocal
by division ; and this would not give him the law of the series, even
if we assume that his knowledge of integration was sufficient to
enable him to proceed any further. From his manuscripts it does
not seem that even up to Nov. 1675 he had any further knowledge
of integrations than that omn.x=2%/2, and omn.x?=x/3; but as
he says that he knows the latter from the quadrature of the parabola,
there is some possibility that he might have been able to integrate
every integral power of the variable from his reading of Wallis and
Mercator.

However, there is the strongest probability that he had not got
any proof for the two things italicized, and that the quadrature was
in the same category. Where then had he obtained it? We find that
in December, 1670, Gregory had found out for himself Newton’s
method of series; and two months later, February 15, 1671, sent
several theorems to Collins, one of which was that now known as
“Gregory’s series.” “And Mr. Collins was very free in communi-
cating what he had received both from Mr. Newton and Mr. Greg-
ory, as appears by his letters printed in the Commercium” (from the
Recensio). One can imagine that Oldenburg would be one of the
first to receive the information, and that for a certainty it would be
passed on to Leibniz. I think then that Leibniz perceived that by
putting #=1 in Gregory’s series, and making the radius of the circle
equal to unity, he could get an arithmetical quadrature; from that
time onward he looked for a proof by pure geometry, and found it
after reading Barrow’s proposition referred to above; if we assume
the possibility of integration of integral powers, it was an easy step
to find that the series he had to integrate was y?/(1+9?), and all
he had to look for on his figure was a line of this length. This very
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well accords with the description of the way in which he found his
demonstration, as given in the manuscript which follows under the
heading II.

Lastly, in connection with the suggestion that I have made
above, namely, that Leibniz had another method for his arithmetical
quadrature than those he has given, there is one method that is
bound up with the change that he made from the Pascalian char-
acteristic triangle which he used at first, to the Barrovian differential
triangle (see a note on this point, Chapter I, p. 15). In Example
5 of the method of the differential triangle (see my Barrow, p. 123),
Barrow has found -the subtangent for the curve y=tans, from a
consideration of the figures below, and finds that

rr CB’ _CK?
e ™ T CG PO e PO
where 7 is the radius of the circle, m is the ordinate MP, which is
equal to BG, and ¢ is the subtangent TP.
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Fig. 5. Fig. 6.

Now if we put the radius equal to unity, and for the ratio ¢/m
substitute what was known by Leibniz to be equal to it, namely,
QP/RM or EF/GH (by construction), we have the sum of all the
EF’s is equal to the sum of ordinates equal to CK? (radius=1)
applied to G at right angles to BG. Analytically, calling BG 2, we
have

1 . .
arc BE=sum.omn.ﬂ_——32 applied to the line z;

hence by division
arc BE=sum.omn.(1—2*+ z'—2%+ etc. )
= z2—2"/3 + etc. ‘

I can hardly see how Leibniz could have missed this with his
analytical mind, even although Barrow has missed it; but there is
a strong probability that at the time of writing, Barrow had not seen
the quadrature of the hyperbola by Mercator, and, if he had, such
algebraical work would not have appealed to him at all.

As far as I can make out, there is only one other alternative,
which involves a direct contradiction of Leibniz’s own statement;
that is that his proof was not by the transmutation of figures in the
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first instance. Color is lent to this view by a letter of Leibniz and
other papers, quoted by Sloman (pp. 131ff, in the English edition
of the work referred to in footnote 23) ; also even by a passage in
the Historia (see Monist, Oct., 1916, p. 599), where, while giving
the story of the discovery of the arithmetical tetragonism, Leibniz
distinctly hints at an algebraical method; for he says immediately
afterwards, “The author obtained the same result by the method of
transmutations, of which he sent an account to England.” This
reads as if he had another method in addition to the method by
transmutations.

Let us consider this algebraical method. To square the circle,
Leibniz has to integrate V/(1-#%)=y, say; let y=1-xz, then
y=(1-2%)/(1+2?), which is rational ; moreover, he would also have
been able to have substantiated his statement that at this time he
also had a proof of the series for the arc whose sine was given, for
which he would only have had to integrate 1/v/(1-4?). But one
cannot conceive that Leibniz had any means of expressing the ele-
ment of z in terms of the element of ». Geometrically, he was in-
capable of it, without using Barrow’s infinitesimal method; and of
this we find the first instance in a manuscript dated November 1,
1675. Algebraically, he could not, for at this same date he could
not differentiate a product. How then are we to account for the
fact that he says he has a method for demonstrating both series
for the arc, given the sine or the tangent? I think I can answer this.
Many times we find assertions made, not only by Leibniz in those
times, but by others in other times, of the possession of discoveries,
when all that the assertor has is the idea of how they may be ob-
tained. Thus, in the passage quoted, the concluding statement is,
“and thus again all that remains to be done is the summation of
rationals.” So that if we accept this alternative we are bound to
come to the conclusion that Leibniz did not yet recognize, what he
ought to have done from the work of Pascal, that an area was not
a mere summation of lines, but of rectangles formed by these lines
ordinated at certain definite points along a straight line. That is to
say, he did not recognize the fundamental principle of integration,
namely, the importance of the factor d+ or ds. When he had to
write out his proof he found that the summation of (1-22)/(1+2%)
or its reciprocal was beyond him; or rather that the series he found
by Mercator’s method was not correct; he had to resort to the geo-
metrical proof, of which he got the idea by digging in Barrow’s
mine, as above; he found that this would not work for the other
series; and consequently he dropped all claim to the second series.
In his letters of 1676, therefore, we find him offering to send New-
ton the proof of his quadrature in return for the method of proof
of the series for the arc when the sine is given.

Thus I come to the conclusion that Leibniz obtained these series
in some way by correspondence, thought he had got a proof of his
own, (which turned out to be incorrect), and much later did obtain
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a proof of his arithmetical quadrature by the transmutation of
figures, after obtaining the idea from Barrow. As the special case,
when x =the radius, had not been specifically mentioned by Gregory,
Leibniz considered that he had a right to claim it, more particularly
as he thought he had devised a proof for it, if it was necessary to
produce one; for of course, Gregory had given no proof according
to the usual custom of the time. Then, when he did find a proof,
after having found that his original idea was hopeless, one can
hardly blame him for sticking to his claim.

Note 2. On the introduction of the Leibnizian algorithm.
(Referred to in footnote 21.)

The two passages in which the signs for integration and dif-
ferentiation are respectively introduced occur in the manuscript of
October 26, 1675.

i. “It will be useful to write / for omn., so that //=omn., or the
sum of the I's.”

ii. Not for some time is the sign for differentiation introduced,
and then in these words: “I propose to return to former considera-
tions. Given / and its relation to #, to find /I. Now this comes
from the contrary calculus, that is to say if fI=ya. Let us assume
that /=ya/d, or as [ increases, so d will diminish the dimensions.
But / means a sum, and d a difference. From the given y, we can
always find ya/d or I, or the difference of the y’s. Hence one
equation may be changed into the other,.....” ,

Now of these the introduction of the symbol for integration
can no more be called an invention than the use of 3 to stand for
“the sum of all such terms as.” It was simply, as Leibniz himself
says, a convenient and useful abbreviation for sum.omn. or omn.
It is nothing more or less than the long s then in general use ; indeed
it was so thought of by contemporary mathematicians, Newton for
one at any rate, for we find in the Recensio the passage, “Mr. Leib-
niz has used the symbols sx, sy, sz for the sums of ordinates ever
since the year 1686.” This may have been an instance of prejudice,
or perhaps the printers of the Phil. Trans. may not have had an
integral sign in their fonts of type; but it shows up the fact that
the English accepted it as the initial letter of the word “summa.”

Now let us consider the introduction of the letter d. Gerhardt
says that it resulted as antithesis to the sign /. How he can possibly
derive this from the context I cannot surmise. I am well aware
that in another passage he was unable to assign a meaning to the
introduction of a letter, which was, to me, clearly used for the simple
purpose of keeping the dimensions correct. We have this use again
in the present passage. Leibniz knows that the sum of the lengths,
/1, is an area: hence taking y to represent a length, given in terms
of x, he introduces the length denoted by a to give with y the area
of a rectangle. Therefore he argues that / must be an area divided
by a length, and he writes I=ya/d, where d is another length, intro-
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duced to keep the dimensions correct. This is clear from the sen-
tence that follows next: “so will d diminish the dimensions.”

So far the sequence of ideas is easy to follow, and there is not
the slightest trace of any concept of differentiation, nor, if the I’s
are ordinated to any axis, any trace of a connection between d and
an element of that axis. The difficulty begins with the next sentence:
“But f means a sum, and d a difference.” The first idea that strikes
one is that this was added later, after that he had found out the
connection between the inverse-tangent problem and quadratures.
Gerhardt gives no suggestion on the point, so until the paper can be
reexamined for small details like differences in the ink or character
of the writing this idea will be disregarded. The next is that about
this time he was reading Barrow, and then one is at once reminded
‘of Lect. X, Prop. 11; this is the proposition in which Barrow proves
that differentiation is the inverse of integration. If we consider
this in the manner of Leibniz, we get the equivalent that is set down
on the right-hand side below:

Let ZGE be any curve of
which the axis is VD; and let
ordinates applied to this axis,
VZ, PG, DE, continually in-
crease from the initial ordinate
VZ; also let VIF be a line such
that if any straight line EDF is
drawn perpendicular to VD, cut-
ting the curves in the points E,
F, and VD in D, the rectangle
contained by DF and a given
length R is equal to the inter-
cepted space VDEZ; also let
DE:DF=R:DT, and join DT.
Then TF will touch the curve
VIF.

Cor. It should be observed that
DE.DT=R.DF=area VDEZ.

Let AC be a curve, whose axis
is AB, and let the ordinate AB
be l;

let AD be another curve, having
the same axis, and let its ordinate
DB be called y;

let this curve AD be such that
the area ABC, i. e., all the I’s or
J1, is equal to the product of
BD and a fixed line, i. e., equal
to ay;

then, taking B(B) equal to unity,
we have I=aw, where w:B(B)
=DB: BT, or w=y/d, i. e,

l=av/d.
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We thus see that the d that results as the “antithesis to the
integral sign” (als Gegemsatz. .. .sich ergab), is not a difference
at all, but the subtangent ; it is y/d or w (on account of B(B) being
taken as unity) that is the difference between the ordinates y. But
there is not the slightest trace of the idea of differentiation; this
is made more manifest by the work which follows, which is based
on his idea of obtaining independent equations, and eliminating all
variables but one and thus reducing the problem to a quadrature.
And yet he seems to perceive from the equation that gives the dif-
ference of the y’s as a quotient, that in some unintelligible way a
division means a difference. Later therefore we find him trying
to find an interpretation of d as an operator, whether he writes it
in front of his y, or as a denominator ; namely, when he considers
what value he is to assign to d(xy). I venture to assert, unless we
assume that Leibniz is considering this proposition of Barrow’s,
that there is no possible connection to be made out between the
several sentences of this passage. Also that in no sense can this
introduction of the letter d be looked on as anything connected with
an algorithm with any idea in it of differentiation.

I am well aware that in the above I have adduced no positive
proof that my idea is correct; I have not had the advantage of
Gerhardt in seeing these manuscripts. But I have honestly tried to
find other ways of explaining the circumstances that lead from y/d
as a quotient to dy as a difference, and I can find none other that
is feasible than that given above, namely, that, perhaps by accident,
Leibniz uses d for the subtangent (instead of the usual ), and per-
ceives from such a figure as the above (which of course I do not
intend to say he has given) that y/d (where d is the subtangent)
works out the same as dy (when dx is taken to be unity) ; in other
words the subtangent d is equal to y/(dy/dx).

NotE 3. On the progress made by Leibniz before November, 1676.
(Referred to in footnote 30.)

The remark made by Gerhardt that Leibniz “had made a
progress, by the introduction of his algorithm into the higher ana-
Iysis, beyond anything that came to his knowledge in London,” is,
to say the least of it, a matter of opinion. From a study of the six
manuscripts, that Gerhardt has given us, that bear dates between
that of the introduction of the integral and. differential symbols
(Oct. 26, 1675) and that of his return to Germany, via Amsterdam
(after Nov., 1676), I fail to see that there is very much occasion
for the main part of the above statement, namely, that the progress
made by Leibniz was at all greater than anything that came to his
knowledge in London; as for this progress, if for a moment we
assume its superiority, being due to the reason set in italics, I fail
to see that Gerhardt has any grounds whatever for such a state-
ment.
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The six manuscripts in question have been given, translated
into English and annotated, in Chaps. III and IV, pp. 84-121; for
convenience I here add a précis of them.

i. Nov. 1, 1675. A continuation of the work on moments about
axes; the new symbols do not occur, omn. being still used.
He has now read Wallis, Gregory and Barrow, in addition
to Cavalieri and St. Vincent; he speaks of his theorem of
breaking up a figure into triangles as bringing out something
new; the whole tone of this manuscript is in the main Pas-
calian.

ii. Nov. 11, 1675. He successfully obtains a solution of the prob-
lem of finding a curve such that the rectangle contained by
the subnormal and ordinate is constant. This he considers
to be “one of the most difficult things in the whole of geom-
etry.” He uses the integral sign, and the denominator d;
but neither integration nor differentiation, the fact that
v2/2d =1y, being taken from the “quadrature of the triangle.”
In verifying his result he quotes Slusius’s Rule of Tangents.
Further on, he has the note that x/d and dx are the same
thing, though there is nothing to show why he comes to this
conclusion ; see the last critical note. He also comes to the
conclusion that d(xy) is not the same as dx.dy; but in the
last bit of work in this manuscript he uses special letters
for the infinitesimals, showing that he has been trying to
find the effect of d as an operator, or perhaps trying to find
the reason of the equality »/d and dr. He has failed to
solve a problem, which results in the differential equation, as
we should now write it, #+vy.dy/dvr=a%/y, or as Leibniz
has it ¥ +w=a?/y; although he gives an incorrect solution,
which he asserts to be true. This time he does not attempt
to verify his solution, the reason being obviously that he is
unable to do so, because one side of his equation is a product.
As a matter of fact, I have it on the authority of Professor
Forsyth that there is no solution of this equation in elemen-
tary functions; or at least he says that he has been unable
to find one, which T take it comes to the same thing. The one
advance that can be found here is the appreciation that squares
and products of infinitesimals can be neglected, as he has
doubtless found in reading Barrow. It is worth noting that
he now uses the differential triangle in Barrow’s form instead
of the form he says he got from Pascal.

iii. Nov. 21, 1675. In this manuscript he sets himself another
problem, which he fails to solve; the curve required is log-
arithmic, and even this fact he fails to bring out. In gen-
eralizations that arise from the consideration of his problem
he obtains dx y=xy—xdy, in a more or less analytical man-
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ner ; but immediately afterward states that nothing new can
be obtained from it; he has already obtained this formula by
his consideration of moments, geometrically; and he does
not appreciate the advance there is in obtaining it algebra-
ically. The manuscript concludes with a consideration of the
figure by means of which it is generally supposed that he
effected his arithmetical quadrature. This is very remarkable
on account of the heading, which reads, “A mew kind of
Trigonometry of indivisibles, by the help of ordinates that
are not parallel but converge.” What I refer to is the use of
the word new, which I have here italicized. It is to be ob-
served that the diagram and the results are almost identical
with those of Barrow, Lect. XI, Prop. 22-24 (see the first
critical note). He concludes by a reference to the trochoids,
which shows that he is still under the influence of Pascal, if
indeed he is not still studying his works.

iv. Nov. 22, 1675. He returns to the subjects of the previous day.
But there is here no mention of the signs of integration or
differentiation.

v. June 28, 1676. Here we have a certain advance, for there
occurs the statement: “The true general method of tangents
is by means of differences.” While he uses dy and dz for the
elements of y and 2, he uses B for the element of x; the rest
of the work is merely Barrovian in principle. This mere
substitution of dy and dz for the special letters used by Bar-
row for the same things can hardly be called progress. What
progress there might be is barred by the use of equations
with three or more variables in them.

vi. July, 1676. The remark on the last manuscript is corrohorated
by the contents of this manuscript. Leibniz asserts that
he has solved two problems, of which Descartes had alone
solved one, and owned that he could not solve the other. The
truth is that he has not solved the former, which was fairly
easy, only given an alternative construction which is, if any-
thing, more difficult to carry out than a construction from the
original data for the curve. The latter he gets out in a hazy
fashion (“....which belongs to a logarithmic curve”). This
conclusion he comes to after several erroneous steps of rea-
soning ; whereas the solution stared him in the face about a
quarter of the way through the work, where he has the
equation c¢dy=ydx, if he could have integrated dv/y with
certainty. The failure I think arises from the study of Pas-
cal, who lays it down that only one of the variables can in-
crease arithmetically, and Mercator’s work has been with y
increasing arithmetically, and Leibniz has already considered
that the x is increasing arithmetically. (See Note 55 on this
manuscript above, Chapter V, p. 121.)
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Throughout the whole of these manuscripts, he makes no prog-
ress, because he is hampered by the idea of keeping one of his
variables increasing uniformly; he seldom uses his algorithm for
differentiation ; and when he does do so, it is merely a substitution
of dx, etc. for the special letters used by Barrow. In fact these
manuscripts appear to me to be the records of his work on the text-
books of his study, Pascal, Wallis, Gregory, and Barrow; and we
see him trying to fit the matter and methods found in them into his
own ideas and notations. It is not until November, 1676, when he
has arrived on the Continent, after having seen Newton’s paper,
that we have any Differential Calculus; even then some of the
standard forms that he gives are not quite correct ; on the other hand,
he gives the method of substitution to differentiate an irrational,
though he uses the Barrovian method to differentiate the general
equation of the second degree, merely using dy and dx instead of
Barrow’s special letters. It is not until July, 1677, that he is able
to give anything like an intelligible account of the differentiation of
products, powers, quotients and roots. Lastly I doubt if Leibniz
ever did really appreciate the Newtonian idea that dy/dx was a rate,
or else the example he gives of the use of the second and third
differentials in his answer to Nieuwentijt would not have contained
so many ridiculous errors.

TRANSLATIONS OF THE MANUSCRIPTS
Alluded to by Dr. Gerhardt.
I.

Scientific memoranda of the visit to England at the beginning of
the year 1673.

When at the beginning of the year 1673, I accompanied his
Excellency the Ambassador of Mainz, Baron Schonborn, a nephew
(on his father’s side) of the Elector, from Paris to London, although
I stayed in England scarcely a month, among various distractions,
I still gave attention to increasing my knowledge of philosophy;
for at that time the English held a high reputation in this subject.

To set out a long minute record of daily happenings is useless
on account of its inequality; for the fortune of all the days was
not the same; indeed the points worth remarking heaped themselves
up one day, and the next gaped with emptiness. For this reason
perhaps it will be more satisfactory to go by heading of subjects,
one remark recalling another as it were.

The principal heads for the subjects noted may be taken as
Arithmetic, Geometry, Music, Optics, Astronomy, Mechanics, Bot-
any, Anatomy, Chemistry, Medicine, and Miscellaneous.
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AritamETIC. The line of proportions or Gunter’s lines or the
double scale. Logarithmotechnia or compendium for calculating
logarithms. To recognize square numbers from non-squares by their
end figures. Morland’s machine.

ALGEBRA. Substance of English algebraical work of 27 years. Al-
gebra of Pell. At first few rules, but numerous selected examples.
Renaldinus not thought much of in England.

GeoMETRY. Tangents to all curves. Development of geometrical
figures by the motion of a point in a moving line.

Music. Its universal character. System of Birthincha(?). Vossius
will publish Music. :

Oprics. They told me of a certain phenomenon that Barrow con-
fessed that he was unable to solve. The difficulty of Newton hitherto
unsolved, Father Pardies giving it up. Hook adheres to a cata-
dioptric instrument of 9 feet, because for another of 50 feet move-
ment inconveniences them. The secret of the largest aperture which
can be given to microscopes is primarily as great as the distance of
the object.

AsTtrONOMY. Arrangement of Hook for | CHEMISTRY.
observing whether the earth at any time
sensibly approaches or recedes from the
fixed stars, from which it can be judged
that it is not in the center of the uni-
verse; he erected it in a fine tube set
perpendicularly, and observed the stars
that are vertically overhead. He, lying
flat on his back, observed their dimen-
sions most exactly.

MECHANICS.

PNEUMATICS.

METEOROLOGY.

HybRrOSTATICS.




186 THE EARLY MANUSCRIPTS OF LEIBNIZ.

NAVIGATION.

MAGNETISM.

Puysics.

Borany.

ANATOMY.

MEDICINE.

MISCELLANEOUS.

II.

[This manuscript is very lengthy, the translation running to
about 6000 words, of which the first 5000 are written as a concise
history of all the great geometers and their works, that are antece-
dent to Leibniz himself. This part is quite unimportant for the
purpose of estimating the part that was played by Leibniz, and it
passes my comprehension why Gerhardt should give it at length,
while he has condensed the other two, which are really important.
Hence, in what follows, I have given a precis of the first 5000 words,
with here and there quotations, in which Leibniz has something to
say that is either critical of the work of others, or a claim to superior
knowledge or better method of his own. The last part, which pur-
ports to be the history of his arithmetical quadrature, together with
his claim to the surpassing value of his achievement, I have given
in full.]

(Precis). Geometry is a modern thing, probably due to the Greeks.
The great name among the Ancients is that of Archimedes, who
first used indivisibles; this use was more profound than that of
Cavalieri, but the method became lost. The name of Apollonius
must not be altogether omitted.

The learning of the Greeks passed on to the Arabs, who con-
quered them ; among these we have Alhazen, and a certain Mahomet,
who gave the formula for the general quadratic.

This brings us to the cubic and biquadratic equations, which
were solved in the sixteenth century. The cubic is due to one Scipio
Ferreus of Bologna ; one of his pupils set the solution as a challenge
after Scipio’s death; Tartalea took up the challenge, found a solu-
tion and told his friend Cardan; the latter extended it and published
it without the consent of Tartalea. Vieta, Descartes, and Ferrarius
gave the solution of the biquadratic. But even Descartes and Vieta
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failed at equations of higher degrees. With regard to the work
of Descartes, Leibniz remarks that “its origin [that is, of the method
of solution] was a widely different and more fertile spring; and if
Descartes had only recognized this, he would have rendered the
discovery of Scipio more general and carried it to further heights.
But what has befallen me in this connection I will say in another
place.” Leibniz further remarks that the method of Descartes
fails to give the roots of equations of higher degree, although the
quality of the roots may be learned through it. “I will show in
another place that the reason for this is clearly known to me from
the most fundamental principles of the art, and that I have estab-
lished an extremely easy method, and ome that is adapted too for
enlarging science, by the many things that follow from it.”

In the seventeenth century, Leibniz goes on to say, after Archi-
medes and Galileo’s several times and influence are gone by, there
is no writer from whom more is to be learned than from Descartes;
and yet he is “unable to pass over certain boastful remarks that he
makes, by which the less experienced among us may be led into
error.” Descartes had said that by his method every geometrical
problem could be reduced to the finding of the roots of equations.
Leibniz remarks that this shows Descartes’s ignorance of the matter.
“For when the magnitude of curved lines or the space enclosed by
such is required (which happen more frequently than perhaps Des-
cartes thought, since he had not applied himself sufficiently to the
‘mechanics’ of Galileo), neither equations nor Cartesian curves can
help us, and there is need of equations of a totally new kind, of
constructions and new curves, and finally of a new calculus, given
so far by nobody, of which, if nothing else, I can now give certain
examples at least, which are remarkable enough.”. ... I hove men-
tioned these things so that men may understand that there are cer-
tain methods in Geowmetry, for which they may look in vain in the
works of Descartes.”

Returning to geometry purely, Leibniz next mentions the work
of Galileo, Cavalieri (whose method he considers is rough and lim-
ited in extent), Torricelli, Roberval, Pascal, Wallis, Huygens, and
Slusius, as contributors to the new geometry. He considers that
a new epoch opens with the work of Neil and van Huraet (on recti-
fication of curves), James Gregory, and Brouncker. “Finally Mer-
cator gave a general formula for the area under a hyperbola.” He
claims Mercator as “an eminent German geometer”; but rather
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decries his discovery as being an easy one, on account of the
ordinates working out as rational in terms of the abscissa. “But it
was not so easy to give the magnitude of the circle, and its parts,
expressed as an infinite series of rational numbers;.... for the
circle, however you treat it, has ordinates that are irrational. How-
ever I, as soon as I had found a certain very general theorem, by
means of which any figure whatever could be converted into an-
other that is quite different from it, but yet of equivalent area, set
to work to try whether the circle could not be converted in some way
into a rational figure; and the thing came out beautifully;.... it
will be worth while here to give a short account of the matter.”

(In full). Nearly everybody who has up to now treated of the
geometry of indivisibles has been accustomed to break up their
figures into rectangles or parallelograms only by means of ordinates
parallel to one another. But the reasoning of Desargues and Pascal
always pleased me very much; these in Conics, as we can call them
in general, include under the name of ordinates not only parallels,
but also straight lines meeting in or converging to a point, especially
when parallels are included under the name of converging, by
saying that the point of convergence goes off to an infinite distance.
Thus while others only consider parallel ordinates, and have broken
up their figures into parallelograms AB(B)(A), (A)(B)((B))
((A)), in the way that Cavalieri does, I employ converging lines
and resolve the given figure into triangles CD(D), C(D) ((D)), and
at once draw another figure of which the ordinates AB, (A)(B),
etc., are proportional to these triangles.

(Fl £ C E (E (E)
(A ) B A)
@) y D)
W1 (B)

(DY

Now this is the case if the AB’s are equal to the CE’s where
it is supposed that the straight lines DE are tangents to the given
curve; for in that case, as I will show below, it will come out that
the space B(B) (A)A will be double of the segment C(D)DC, and
for any figure such as C(D)DC another that is equivalent to it can
be drawn. Now, supposing that the curve D(D) ((D)) is circular
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and that CA is a part of the diameter, then, calling CA or FB z,
and CF or AB 4y, and the radius of the circle unity, calculation
will show that the value of x is 2y?/(1+%?). Thus the ordinate
FB or x can be expressed rationally in terms of the given abscissa
CF or y. Such figures as these, in which the ordinates can be ex-
pressed rationally in terms of the abscissae, I call rational. Thus
we have drawn a rational figure equivalent to the circle, and this
will be soon seen to be sufficient to give the arithmetical quadrature
of the latter. For, from the sum of a geometric series of an infinite
number of decreasing terms that is well known to all geometers, it
follows that y2—y*+9°— 4%+ 4% — 4124 etc. to infinity is the same as
y2/(1+4?), i. e, the same as 1, if only we understand that y is a
quantity that is less than the radius, or unity. Now, since we have
to collect together the infinite number of 14’s into one sum, in order
to obtain the quadrature of half the figure C(F)(B)BC and what
it comes to, namely, that of the circle; so also have we to collect
together the infinite number of series y2 —y*+ y%— 9%+ y1°— 412t etc.,
into one sum, and this by the method of indivisibles and infinites
can be done without difficulty. For, suppose that the last y, which
in general is taken as C(F), to be b, then the sum of every y? will
be b3/3, and of every y* will be b%/5, and of every y® will be b7/7,
and so on; hence, the sum of the infinite number of }4’s, or of the
series Y2 —y*+ 48 —48 4+ 410 — 4124 etc,, i. e., the area of half the space
C(F)(B)BC, will be b3/3-b°/5+b"/7-b°/9 etc. From which,
by the help of ordinary geometry, it can be easily deduced that the
square on the diameter is to the area of the circle as 1 is to 1/1 -
1/3+1/5-1/7 +etc.; also speaking in general, supposing b to be
the tangent, then the arc is b/1-b3/3+b%/5-b"/7 +b°/9-b'1/11+
etc. Hence it now follows that any one without the help of tables
and continual bisections of angles and extractions of roots can ap-
proximate to the magnitude of the arc to any degree of accuracy
desired, so long as the tangent b is a little less than the radius;
so that if we take the tangent to be a little less than the tenth part
of the radius, the arc may be obtained with sufficient accuracy.
Let us take the tangent to be a tenth part of the radius, then if we
want the arc, it will be

it . 1 1 . 1 .
10 3000 ' 500000 70000000 ' 9000000000 < o’

and reducing all to a common denominator, and adding the numbers
into one sum (for it is not worth while going any further), then the
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arc will be a little greater than 518027821302775/5197500000000000,
-and the defect of this value from the true value will be less than the
1,/1000000000000 part of the radius. For if we do not subtract the

-last term, 1/1100000000000, the value would be too great, and if
we do subtract it, the value is less than the true value, there-
fore the error is less than 1/1100000000000, and thus is less than
1,/1000000000000.

It is seen how exactly it comes out with such easy calculation
involving only additions, subtractions and multiplications, to an ex-
tent that is not obtainable with tables. Also if the ratio of the tan-
gent to the radius is anything else, the arc can similarly be found,
-and this is especially easy when it can be expressed in decimal parts.
Again, since now the ratio of the circumference to the radius is
given in numbers of any required degree of accuracy, by this also
the ratio of a given arc to the circumference is given, and thus
also the quantity of angle for a given tangent will appear with any
required degree of accuracy. In this way tables may be corrected,
supplemented, or, if need be, enlarged, with no great trouble. Any
one who will just remember this fairly easy rule will be able without
tables to attain to any required degree of accuracy with very little
labor. How great an acquisition this is to geometry, I leave it to
those who understand to estimate.

CriticaL NOTE.

It is difficult to see the object that Leibniz had in writing this
long historical prelude to an imperfect proof of his arithmetical
quadrature, unless it can be ascribed to a motive of self-praise.
This suggestion would seem to be corroborated by the claims that
Leibniz makes in the parts where I have quoted his own words in
italics in the precis, and by the concluding sentence of the trans-
lation given in full. Even if this is so, there may be some plea of
justification put forward; for Leibniz appears to have been a man
impelled by many contradictory motives, but these I think can all
be traced back to one origin. The time in which he lived was a time
of great discoveries in geometry; Leibniz knew in his soul that he
had it in him to be one of the great men in this branch of learning,
but as truly recognized his great disability due to his lateness in
starting, and felt that his only chance was to belong to the very
exclusive set who corresponded with one another; he saw that the
only way of entering this set was to do something brilliant. This
may be taken as some excuse for any self-praise that we find, and to
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a less extent for his, to my mind, undoubted plagiarisms. With
regard to the behavior of Leibniz, when charged with these plagiar-
isms, Sloman is not beyond calling Leibniz a liar point-blank; I
prefer to call his statements perversions of the truth, made under
stress of circumstances, so that his reputation as a great and original
thinker should not suffer. For instance, to explain what I mean, I
will take the statement of Leibniz to de I'Hospital that he owed
nothing to Barrow. As I have said in another place, from one point
of view, the point of view that Leibniz would take for the purposes
of this letter, Barrow would be a hindrance rather than a help to
Leibniz, in the formulation of his algebraical calculus, after he had
once absorbed all the fundamental ideas. That is, it would seem
that Leibniz always tries to tell the truth, but to put it in a form
that to the uninformed reader will convey quite a wrong impression.
Another example of this juggling with words and phrases is given
by Sloman, in the shape of a letter from Leibniz, dated August 27,
1676, and the first draft of the same; these two read together are
very much the same, but read apart convey a totally different im-
pression.

A second characteristic of Leibniz may also be traced back to
his desire to make up for his lateness in starting; that is, the some-
times ridiculous claims that Leibniz makes to discoveries, or rather
hints at having made.them. An instance is given in the Historia
(see above, Chapter III, p. 44). “It is required to form the sum
of all the ordinates V/ (1—xx) =1y ; suppose y==+1=xz, from which
x=2z/(1+2z), and y= (+zz+l)/(zz+1) and thus agam all that
remains to be done is the summation of rationals.” TUnless we
assume that Leibniz never understood in all his life what we now
call the change of the variable in integration, which to me seems
rather far-fetched, the only reason why this should have been
allowed to appear in a tract that was certainly written after 1712,
is that Leibniz had never attempted this summation; he had set this
down in 1674 and 1675 as a method of quadrature for the circle,
not at that time having perceived the importance of the factor dz,
or, in other words, the way in which the ordinates should be ordi-
nated ; for as I have already pointed out, at that time Leibniz could
not have found dz, since he could not differentiate a product. This
goes to prove that his reading of Pascal was not of the profoundest;
for Pascal is very careful over this point, going to the trouble of
calling the y’s ordinates when drawn through the points of equal
division of the base, and sines when they are drawn through the
points of equal division of the arc. Probably to this characteristic
is due the claim, set in italics in the manuscript above, with respect
to equations of higher degrees. He thought he had a general
method, which he had not time to verify by particular examples,
and so find that his claim was erroneous. For surely this cannot
be read as a claim to the Tschirnhausian transformation and the
expression of a quintic in the canonical form 2%+ px +¢g=0.
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The date of the above manuscript is almost certainly antecedent
to the manuscript that Leibniz got ready for the press, De Quadra-
tura ; hence his claim to be able to give examples of the calculus,
except for integral powers which had already been done by Wallis,
is without foundation.

With regard to the arithmetical quadrature itself, the great
importance of it in the estimation of Leibniz is apparently in the
correction and enlargement of tables; this claim, as Leibniz puts it,
is ridiculous, although it could be so used by first constructing tables
for angles whose tangents are given. But Leibniz, after giving a
calculation true to twelve places of decimals, states that “the ratio
of the circumference to the radius is now known,” and proposes
to use that. Apparently he does not see that to calculate this ratio
from the series he gives, it will be necessary to take a billion or so
of terms! For he does not give any hint of any modification of the
series, or the use of the value obtained for some small angle.

Lastly, with regard to the calculation, it is strange that the
denominator chosen as a common denominator is 15 times what it
need have been ; also it is a matter of wonder, considering that tables
of logarithms were known to Leibniz, as a reader of Mercator and
others, that Leibniz puts the matter in fractional form instead of
working in decimals ; thus, the arc whose tangent is 0.1 is equal to

0.1 -0.00033333333333333. ...

0.000002 0.00000001428571428. . . .

0.0000000001111. .. 0.000000000000909. . . .
=0.100002000111111. .. -0.000333347619956. . .

=0.99966865249. . ...

Finally, note that while Wallis and Brouncker are mentioned,
Barrow is not. This is all part and parcel of his successful attempt
to conceal, from all but Oldenburg, the fact that he had a copy of
Barrow in his possession, right from the commencement of his

studies.

III.

Transcribed from a manuscript tract of Newton on “Analysis by
means of equations with an infinite number of terms.”

ABn#, BDny, a, b, ¢ given quantities,
m, n whole numbers. If then

m an T '
ax= My, " x * N [/y]m area of ABD. D .
m+n
. . . . o
In connection with this the following ex- A

ample is to be noted:
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If —1§ (Ma7%) My, that is to say, if a=1,
x

n=-1, and m=-2, then we shall have L
<-1—x—Tl L"|> —x7! <or _—1> MeBD,
—1 x
produced indefinitely in the direction of o; £ &

the calculation makes this negative because

it lies on the other side of BD.
| - 1 1 1 .

Again, if po (or x7') M y, then ax% r ax" n ax‘ (* this

ought to be written % 1*)n % r infinity, which is the area of the

hyperbola on either side.

If 1+ 2 My, on division we obtain
Yyl —a?+ 2t —2%+etc., and then
x x3 x5 x7 .
nz—= +=< —-% .3 if 0
ABCD 1 3t5g 7 + etc. ; or, 1 7
the term #?2 is the first in the division, the value o
of y will be #2—a*+2%—etc, A
' x? xt
n-= 7 —z .
and hence BD a 1 *3 5 * etc

The first method is to be used when x is small enough, and the
second when x is large enough.

Gerhardt then remarks that Leibniz has noted completely the
following two cases of extractions of roots:

s/(1+ax_x)
v (1—bxx) V-

Gerhardt further notifies the reader that he has omitted everything
that he has found Leibniz to have copied out word for word, on
comparison with Biot’s edition of the Commercium Epistolicum
(1856).

In the above, Leibniz marks interpolated remarks of his own
with either [ ] or (¥ *¥).

In the same manner, Leibniz has written out word for word
the part of the manuscript dealing with the solution of adfected
equations (against this he has put the final observation: “And these
things that have been given will be sufficient for the investigation
of areas of curves”), in addition to the part which follows, “the
application of what has been given to other problems of the same
kind,” which, as being already known to him, he has not copied out.
He goes straight on to the next section, “To find the converse of the

V(a2 + %) Ny, and
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foregoing, that is, to find the base when given the area, and to find
the base when given the length of the curve.” He has written this
out word for word ; also he has noted fully to the end the “proof of
the method of solution of adfected equations.”

At the end of these extracts from Newton’s tract follow the
words, “I extracted these things from the letter of Newton 20 Aug.
to Newton.” Gerhardt states that he has already said all that is
necessary about the contents of these extracts.

SECOND SHEET.
Extracts from the correspondence between Collins and Gregory.

Among a number of partly illegible and unintelligible notes the fol-
lowing were to be noticed.

Gregory, January, 1670: Barrow shows himself to be most
subtle in the geometry of optics. I think that he is superior to all
whose works I have looked into, and I esteem this author beyond
anything that can be imagined.

Sept., 1670: I think that Barrow has gone infinitely further
than all those who have written before him. From his method of
drawing tangents, combined with certain meditations of my own,
I found a general geometrical method of drawing tangents, without
calculation, to all curves, which not only contain his particular
methods, but the general method as well. This is shown in 12

propositions.
Letter of Newton, 1672: ABC is any
angle, ABrnx, BCry. Take, for example, c
the equation,
0 1 0 0 2 3
x —2 2%y + b2 —bx — byt —y no.
2 2 1 0 0 A B

Multlply the equation by an ar1thmet1ca1 pro-

gression, both for the second dimension y and for x; the first
product will be the numerator, and the other divided by # will be
the denominator of a fraction which will express BD, thus,

—2 2%y +2 b7 =348

3 2 —4 xy +2 bx —6

Moreover that this is only a corollary or a case of a general method
for both mechanical and geometrical lines, whether the curve is
referred to a straight line, or to another curve, without the trouble
of calculation, and other abstruse problems about curves, etc. This
method differs from that of Hudde and also from that of Sluse,
in that it is not necessary to eliminate irrationals.

BD n
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NortE.

It is almost useless trying to write a critical note on the above
in such an incomplete state. But I may remark that Leibniz appar-
ently was at the time quite ignorant of what we now term “putting
in the limits for a definite integral.”

Gerhardt considers that the existence of this extract proves
conclusively that Leibniz did not see the letter of Newton so often
referred to; forgetting, as Sloman remarks, that Leibniz ought not
to have seen the tract at all!

P.S. In allusion to Notes 3 and 18 on pp. 159 and 165, and
Note 31 on p. 16, with regard to the use of the word “moment” or
“momentum” as it is applied by Leibniz, I have found since they
were written that Cavalieri, in his Exercitationes Sex, defines the
term in the mechanical sense and gives much of the matter of Pascal
on Centers of Gravity, as it appears in the “Letters of Dettonville.”
I suggest that Leibniz saw it in Cavalieri, and that its origin is to
be traced to Galileo. See Note 25 on p. 208, where a precis of the:
fifth Exercitation is given. Duhem, in Les origines de la statique
(Vol. 1, pp. 134-144) attributes the first notion of a “moment” to’
an unknown, who is referred to as “the precursor of Da Vinci”
(? Jordanus Nemorarius; cf. Jordani opusculum de ponderositate
Nicolai Tartaleae studio correctum, etc. MDLXV).

The mechanical use of “moment” must be distinguished from
the primary meaning of an inherent force: we see that in 1684 this
still persisted. For, in the Acta Eruditorum, 1684, p. 511, there are -
extracts from the De momentis gravium of J. F. Vanni, 1684, in’
which the equilibrium of a sphere on two planes is considered; and
here the “total moment” of the sphere is its weight, i. e., the vis
descensiva of the predecessors of Cavalieri. Cavalieri however
points out that the same body may have different moments for dif-
ferent positions.



VIL

LEIBNIZ AND PASCAL.

(BY C. 1. GERHARDT.)

N the History of Mathematics it is generally stated that

the higher analysis took its rise in the method of indivi-
sibles of Cavalieri (1635).> This assertion, at least as far
as the invention® of the algorithm of the higher analysis is
concerned, is erroneous. In what follows it will be shown,
by argument founded on the work of the French mathema-
ticians of the seventeenth century and on the manuscripts
of Leibniz, that Leibniz was led to his invention of the
algorithm of the higher analysis by a study of the writings
of Pascal, more than by anything else.*

! [Translated from Dr. C. I. Gerhardt’s article, “Leibniz and Pascal,” in
the Sitzungsberichte der Koniglich Preussischen Akademie der Wzssenschaften
zu Berlin, 1891 (Zweiter Halbband), pp. 1053-1068. My own notes are put in
square brackets, to distinguish them from those given by Gerhardt.]

2 “When I speak of the geometry of indivisibles,” says Leibniz, “I intend
something far more comprehensive than the geometry of Cavalieri, which does
not appear to me to be anythmg but an insignificant (medzocms) part of the
geometry of Archimedes.” [The general statement appears to me to be nearer
the truth than that of Gerhardt, who lays unjustifiable stress on the above
remark of Leibniz. I have endeavored to show later that there is strong prob-
ability that the work of Cavalieri, which Leibniz in the Historia acknowledges
to have read, was the Exercitationes Sex, and not the Geometria that was pub-
lished ten years earlier; perhaps he read them both.]

3[It seems to me that those who claim merely the symbolism of the
Calculus as an “invention” of Leibniz are really detractors from his genius.
I have endeavored to show in the chapters previous to this, that this sym-
bolism, more especially as regards the sign of differentiation, was a gradual
adaptation and development of ideas already preconceived for finite differences,
until Leibniz had obtained a standardized symbolism for the infinitesimal cal-
culus. This, in my opinion, evidences an immensely greater intellect than that
necessary for an “invention”; even if we do take the standpoint that he was
helped by the work of his immediate predecessors. Perhaps Gerhardt’s word
Erfindung might be better rendered by “construction” instead of “invention”
or “discovery.”]

4 [There was absolutely nothing in Pascal to suggest the sign or the rules
for differentiation, and Leibniz might just as easily have obtained his ideas on
integration from Galileo or others as from Pascal.]
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With regard to the manuscripts of Leibniz, the first
letters of the correspondence between Leibniz and Tschirn-
haus are weighty; they contain the further discussion of
their joint labor during the time that they lived together in
Paris (September, 1675, to November, 1676);® it is well
known that it was during this time that Leibniz invented
the algorithm of the higher analysis. Among these letters,
one from Leibniz, not hitherto published, which closes the
first part of the correspondence between Leibniz and
Tschirnhaus, contains a very detailed statement of the
studies of Leibniz during his sojourn in Paris; it is beyond
dispute of the utmost importance, since it was written only
four years afterward and recalls particulars in a most
vivid manner.®

Next, we have to consider the works of the French
mathematicians about the middle of the seventeenth cen-
tury, especially those of Pascal. We know from the facts
of Pascal’s life that his father, when he moved to Paris in
1631, joined a circle of mathematicians and physicists,” of
which the history of science has preserved the names of
Mersenne, Roberval, Gassendi, Desargues, de Carcavi,
Beaugrand, des Billettes, and others. These were in com-

5[ According to the generally accepted account, Leibniz was in London at
the end of the third week of October, 1676, on his way home, via Amsterdam.
At that time he could not diffeventiate a product.]

8[A point therefore to be carefully noticed is that the figure given for the
characteristic triangle is totally different from that given in the “Bernoulli
postscript”; it is also different from the figure used by him in the manuscript
dated Oct., 1674, which is undoubtedly derived from the figure used by Pascal
in the opening lemma to the Traitté des Sinus du quart de Cercle (compare
the figures given on pp. 62 and 15) ; it is different from either of the figures
used in the manuscripts of Oct. 29, Nov. 11, 1675 (see above, Chapter IV,
pp. 78, 83, 102), the last of these belng like Barrow’s Differential Trlangle,
as used by him throughout his theorems on quadratures. Does this point to
a new supposition : namely, that Leibniz originally invented a certain character-
istic triangle of his own, essentially different in small detail from that of Pas-
cal, Barrow, or anyone else; thatthen he gradually passed from this to that of
Pascal, later to Barrow’s form; that he found this the most convenient of all;
finally, through lack of memory, he ascribes the earliest form to Pascal, instead
of to himself, making an erroneous apperception of the time at which he had
discovered this early form? The point is referred to in a later note (40).]

7 It went by the name of “Compagnie”; out of it grew, in 1666, the “Aca-
démie des Sciences.”
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munication, chiefly through Mersenne, with the mathe-
maticians who did not live in Paris, Descartes, Fermat, and
de Sluse; so that about the middle of the seventeenth cen-
tury all that was best (die Hohe der) 'in the science of
mathematics was concentrated in Paris.® In this circle
Pascal moved, hardly yet out of his boyhood, and excited
by his eminent talent astonishment and admiration. As an
outstanding characteristic of the works of the mathemati-
cians named above there stood forth the endeavor to aban-
don the method of Cavalieri as lacking every feature of
scientific rigor, and to treat the science according to the
methods of the Greek mathematicians.” Perhaps the ideas
of Kepler, in his Supplementum Sterveometriae Archime-
deae,'® were of influence, when Roberval and Pascal intro-.
duced into geometry the ideas of infinity and the infinitely
small.! ‘ ’

As for those works of Pascal, which belong to this
subject, we must mention in particular the solution of the
problems, produced by him in 1658 under the assumed
name of Dettonville, on the cycloid. By this, and by the
method that he employed, he surpassed all the mathemati-
cians contemporary with him, and he earned for himself
the fame of being the greatest geometer of his day.

The investigation of the properties of the cycloid had
occupied the attention of the most famous mathematicians

8[Gerhardt no doubt here refers to French mathematicians; but the first-
mentioned names, of those that lived in Paris, with the exception of Roberval
hardly bear comparison with those of the three who did not live there.]

9 The writings of Roberval and Pascal bearing reference to this have been
mentioned in the essay “Leibniz in London.” [Omitted in Chapter VLI.]

10 Noya Stereometria Doliorum Vinariorum, inprimis Austriaci, figurae
omnium aptissimae, et Usus in eo Virgae Cubicae compendiosissimus et plane
singularis. Accessit Epitome Steveometriae Archimedeae Supplementum. Lin-
cit an. M DC XV. See my Geschichte der Mathematik in Deutschland, pp. 1094

11 Roberval in a letter to the astronomer Hevelke (Hevelius) in Dantzig,
writes: “Concerning analysis, in which I delight, I have far more [theorems];
and no fewer concerning the doctrine of the infinite, which they now call the
‘doctrine of indivisibles’....” Published in: Huygens et Roberval. Documents
nouveaur. Par C. Henry; (Leyden, 1879).
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of the seventeenth century. It is reported that, earlier
than anybody else and indeed before 1599, Galileo had had
his attention called to this curve in consequence of his con-
struction of arches for a bridge; he endeavored to find its
area in a mechanical way, by weighing a plate of lead of
uniform thickness having the shape of a plane bounded
by a cycloid; and he found that it was very nearly three
times as great as the area of the generating circle. This
result he was unable to confirm theoretically. In 1615,
Mersenne had his attention called to the cycloid as gen-
erated by a rolling wheel; he spent a great deal of time in
investigating the nature of the curve, but without success;
so that, in 1643, he corresponded with Roberval concerning
the difficulties that he had encountered with respect to the
curve. Roberval proved, by the help of the method of
Cavalieri as improved by himself, that the area of the
cycloid is exactly three times that of the generating circle;
furthermore, in 1644, he determined the content of the
solids formed by the rotation of the cycloid about its base,
about its axis, and about the diameter of the generating
circle; also he found the centroid of the area of the cycloid.
In consequence of a bodily infirmity that robbed him of his
rest at night, Pascal, in order to obtain some distraction
from his pain, once more took up the investigation of the
cycloid after an interval of fourteen years, in the year 1658.
His design was to find the area of any chosen segment of
the cycloid, the centroid of such a segment, the volumes of
the solids described by such a segment by a rotation round
either the ordinate or the abscissa, either by a complete,
or a half, or a quarter revolution.”” Inasmuch as the solu-
tions of the problems hitherto investigated had not been
done by any general method, but rather by special arti-

12[By ordinate and abscissa, Gerhardt means what Pascal calls the axis
and base of the segment. Pascal only considered the whole solid of revolution,
and the semi-solid, their volumes, their centers of mass, and the centroids of
their surfaces; but those for solids generated by a quarter of a revolution
could have been deduced quite easily.]
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ficial ways of procedure, the question was that of specially
creating a treatment that was applicable in general. Pascal
reverted to the method of Archimedes, for determining the-
quadrature of the parabola by means of the equilibrium of
the lever; he generalized the method,”® by supposing, in-
stead of geometrical figures, unequal weights not merely
at the extremities of the lever (which he follows Archi-
medes in terming balance) but also at several different dis-
tances from the fulcrum; of these, by means of the Arith-
metical Triangle which he had invented,'* he determined
the sum and the center of gravity. On the advice of his
friends, Pascal, in June, 1658, under the alias of Detton-
ville,"s determined to propose to mathematicians for solu-
tion the problems that he had solved. October 1, 1658, was
settled as the last day for sending in solutions. Particular
cases of the proposed problems were solved by Huygens,
de Sluse, and Wren, before the appointed day; but this
was not sufficient to meet the requirements of Pascal. At
the request of de Carcavi, Pascal made known the above-
mentioned method for solving such propositions in a long
letter, at the beginning of October, 1658,'* and added

13[Pascal, in effect, obtained the general formula
7=2(mx)/Z(x),
where Z stands for either a summation of finite quantities, or for the equiva-
lent of integration. If this is to be ascribed to Pascal as an original contribu-
tion, then we must assume that he had never seen Cavalieri’s Exercitationes
Sex, Exer. quinta, Theorems 6, 7, 8, and certain others of the fifty propositions
that form this section of the book; the section being entirely devoted to centers
of gravity, while the method is a direct anticipation of Pascal’s.]

14[What is generally known as the Arithmetical Triangle is not men-
tioned in the Lettres de Dettonville; see Note 19, p. 204.]

15[t may be of interest to note that the pseudonym of Amos Dettonville
is an anagram on Lovis de Montalte; Lovis, or Louis de Montalte being the
pseudonym under which Pascal’s Lettres provinciales appeared.]

16 Pascal published what he had written to de Carcavi along with the five
essays in the following year, under the title of: Lettres de A. Dettonville con-
tenant quelques unes de ses Inventions de Geometrie. Scavoir, La Resolution
de tous les problemes, touchant la Roulette qu’il avoit proposez publiguement
au mois de Juin, 1658. L’Egalité entre les Lignes courbes de toutes sortes de
Roulettes et des Lignes Elliptiques. L'Egalité entre les Lignes Spirales et
Paraboliques, demonstrée & la maniere des Anciens. La Dimension d'un
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thereto three further propositions with respect to the cy-
cloid. In this letter are combined five essays, which pre-
pare the way for the solution of the problems of Pascal.

Solide formé par le moyen d’'une Spirale autour d'un Cone. La Dimension et
le Centre de Gravité des Triangles Cylindriques. La Dimension et le Centre
de Gravité de VEscalier. Un Traitté des Trilignes et leurs Onglets. Un Traitté
des Sinus et des Arcs de Cercle. Un Traitté des Solides Circulaires. A Paris,
M DC LIX. This writing contains the essays of Pascal of the year 1658 to-
gether with communications to Huygens, de Sluse, and an unnamed corre-
spondent. From the correspondence of Huygens in the years 1658 and 1659,
which is printed in that truly great work: Oeuvres Complétes de Christican
Huygens publiées de la Société Hollandaise des Sciences, we see that a great
movement arose among contemporary mathematicians through Pascal’s prob-
lems, as well as through the printed works that we have mentioned. Leibniz
expresses himself thus: “By this time, the controversy [referring to Gregory
St. Vincent] had cooled down; when lo! fresh movements in the realm of
geometry are stirred up through the whole of France, by Blaise Pascal, a man
of the highest genius, and one who at that time had come nearer to the reputa-
tion of Galileo and Descartes than any one else.”—This writing of Pascal was
recommended for study to Leibniz by Huygens.

[As given by Pascal in his letter to de Carcavi, containing the particulars
of his method for centers of gravity and the definitions of “trilignes” and
“onglets,” the problems proposed in June were:

1. To find the dimension and the center of gravity of the space CYZ.

2. To find the dimension and the center of gravity of its semi-solid of

rotation about the base ZY, i. e., the solid formed by the triligne CYZ
when rotated about the base ZY through half a turn only.

3. To find the dimension and the center of gravity of the solid of revolu-

tion about the axis CZ.
y " w/ |,
v

Z

v/ N

A F

To which are added the three proposed in the Histoire de la Roulette at
the commencement of October:

1. To find the dimension and the center of gravity of the curved line CY.

2. To find the dimension and the center of gravity of the surface of the
semi-solid about the base.

3. To find the dimension and the center of gravity of the surface of the
semi-solid about the axis.]



202 THE EARLY MANUSCRIPTS OF LEIBNIZ.
i. Traitté des Trilignes et leurs Onglets.'”

In this essay, the determination of the content and the
centroid of a “triligne” and its “double onglet” is reduced
to the sum of the ordinates of the axis or the base in a
triligne; also Pascal showed that the determination of the
content and the center of gravity of the curved surface
of the double onglet could be expressed as the sum of the
sines of the axis.'

17 By “Triligne” Pascal intends a plane figure bounded by two straight
lines perpendicular to one another and a curved line. One of these perpen-
dicular lines is called the axis and the other the base of the figure. If upon
such a figure as a base there is erected a right solid, and this solid is cut by a
plane which passes through the axis, or the base, then the portion of the

solid that is cut off is called an “onglet” A “double onglet” is obtained if,
through the solid formed by production on the other side of the base, there is
drawn a plane with the same inclination. [The last sentence does not make
it clear that the second cutting plane also passes through the axis, or the
base, as the case may be; nor that the plane is anticlinic and not parallel to
the first plane; nor that Pascal took in general the inclination of the planes
to the plane of the triligne to be 45°. I have therefore tried to represent the
onglet and the double onglet in a diagram, see above.

ABC is the triligne, OABC is the onglet of (the axis or base) AB, and
OB;PCjA is the double onglet of AB; the angles OAC, PAC are half right
angles.

18 By Sinus Pascal intends the ordinates multiplied by the indefinitely small
portions of the arc. [This is a very misleading statement; for Pascal espe-
cially distinguishes between sines and ordinates, and thus makes a consider-
able advance over his contemporaries. He defines them at the same time for
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The next essay,

ii. Propriétésdes sommes simples, triangulaives et pyra-
midales,

is an appendix to the foregoing. By triangular sum, Pas-
cal meant the sum of a number of magnitudes, each one
multiplied in succession by the corresponding number in
the natural scale. In the same way, a pyramidal sum de-

finite section and for infinitesimal section; the distinction is made perfectly
obvious in a diagram if we use finite section, say, division into four equal parts,
of the quadrant of a circle as a special case of a triligne. Now the sum of the

SINES OF THE BASE. ORDINATES OF THE BASE.

sines or the ordinates are defined as the sum of the rectangles (for, as with all
cases of indivisibles, that is what it comes to), formed by the sines or the
ordinates respectively multiplied by the corresponding equal sectional parts.
Thus, to speak of the sum of the sines as being the ordinates multiplied by the
small portions of the arcs is quite wrong. Though only in rare cases is the
space drawn, Pascal’s idea of the sum of the sines is that of the space formed
by straightening the arc and erecting at each point of division the correspond-
ing sine. Now, as Pascal says in Prop. 1 of the Traitté des Trilignes, the sum
of the ordinates, which have to be applied to the base, makes the figure itself;
while in Prop. 1 of the Traitté des Sinus du quart de Cercle, he shows that the
sum of the sines (as a special case of the general theorem quoted in iii by
Gerhardt supra, p. 534) of a quadrant is equal to the square on the radius.
Thus, in modern notation,

™
2
sum of sines =f rsinf, d(r0) =»?
0

w

2
sum of ords. =J 7 sinb . d(» cosf) = — { nmr? .
0

The concluding paragraph of the Traitté des Solides Circulaires runs thus:
“All these results arise from the fact that the straight lines OI are ordinates,
that is to say that they are equally distant and proceed from equal divisions
of the diameter; this brings it about that the simple sum of the ordinates is
the same thing as the space intercepted between the extremes. But this is not
true for the sines, since the distances between adjacent ones are not equal to
one another, and thus the sum of the sines is not equal to the space intercepted
between the extremes; there must be no mistaken idea on this point.” We find
the same care taken by Barrow; but Tacquet breaks down in determining the
surface of a cone through not understanding the necessity of this point, and
in consequence condemns the method of indivisibles.]
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noted the sum of a number of magnitudes, each one in suc-
cession multiplied by the corresponding triangular num-
ber.*

Then comes,

iii. Traitté des sinus du quart de Cercle.

In this, Pascal begins by proving the theorem: “The sum
of the sines of any arc of a quadrant of a circle is equal
to the product of the part of the base, intercepted between
the extremities of the outside sines, multiplied by the
radius of the circle.” By the help of this theorem, he in-
vestigated the sum of the sines of a quadrant of a circle,
their squares, their cubes, fourth and higher powers,” the
sum of the rectangles of each sine of the base into its dis-
tance from the axis, the triangular and pyramidal sums
of the sines of the base, and so on.

19[The effect is as Gerhardt states, but these sums are differently defined
by Pascal in his letter to de Carcavi. The triangular sum of the numbers or

magnitudes A, B, C, D, starting with A, (which should be stated),
is the sum of all of them, plus the sum of all of them except the A B C D

first, A, plus the sum of all except the first two, A and B, and so BCD
on; this is represented by Pascal as in the margin, and he goes CD
on to show that this is equal to the first taken once, the second D

twice, and so on. Thus defined, the reason why they are named

triangular numbers is obvious. The pyramidal sum is similarly A B C D
defined as the triangular sum of all, plus the triangular sum of 1 2 3 4
all except the first, plus the triangular sum of all except the first

two, and so on. As if there were built up a pyramid having the first triangu-
lar sum as its bottom layer, the second triangular sum as the next layer, and
so on; thus defined, the origin of the name pyramidal is obvious. Pascal then
shows that this is the sum of the quantities taken respectively once, three
times, six times, and so on, according to the sequence of the triangular num-
bers. Then using the property that twice a triangular number diminished by
its ordinal number is equal to the square of that ordinal (i.e,n(n+1)—n=
n?), he also shows that, if two such pyramidal sums of quantities are taken,
and from one of them the bottom layer is removed (i. e., the first triangular
sum), then the sum of the two is equal to the sum of the quantities respec-
tively multiplied in succession by the squares of the natural numbers. There
is no connection between this and what is usually known as the Arithmetical
Triangle of Pascal.]

20[Pascal simply states the results, as deduced, not from the theorem
quoted by Gerhardt, but (together with the theorem quoted) from the pre-
liminary lemma that the radius is to the sine as the hypotenuse of the infini-
tesimal triangle is to its base: in modern notation, »:y=ds: dx, or rdr =9y ds,
where y is a sine and not an ordinate in Pascal’s sense. All the following
theorems are particular cases of the formula [y ds=r.[y*-1dx.]
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The next essay,
iv. Traitté des sinus et des arcs de Cercle,

contains the determination of the sum of all the arcs of a
circle measured from the vertex of a quadrant to any
ordinate of the axis, the sum of their squares, or their
cubes, the corresponding triangular and pyramidal sums,
the simple and triangular sums of the sectors, the sum of
the solids formed from every sector of a quadrant and
the distance of its center of gravity from the base, and
SO on.

v. Petit Traitté des solides ctrculaires.

In this is investigated the position of the center of gravity
of such bodies as are formed by the rotation of half a band
of a circle about the axis or base, the sum of the fourth
powers of the ordinates of the axis, of their cubes, the
position of the center of gravity of the semisolid of revo-
tution arising from a rotation about the axis, and so on.

These five essays conclude with:

Un Traitté general de la Roulette, contenant la Solution
de tous les Problemes touchant la Roulette qu’il
avoit proposez publiquement au mois de Juin
1658.

All these works of Pascal are strictly geometrical in
treatment, after the manner of the geometry of the an-
cients; there is not to be found in them a trace of the
method of dealing with geometrical problems introduced
by Descartes.?!

It is well known that Leibniz through his acquaintance
with Huygens, who lived in Paris from 1666 to 1681, was

21 Descartes had spoken disparagingly about Pascal’s “Essay on the Conics.”
Perhaps Pascal’s decided opposition to Descartes may be traced back to this.
Pascal’s niece, Marguerite, writes: “M. Pascal used to speak very little about
science ; however, when the occasion for doing so occurred, he would state his
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encouraged to study higher mathematics. More especially,
it was Huygens who advised him to read the writings of
Pascal. Upon several occasions later, has Leibniz de-
clared, in conformity with this, that he was led to the
higher analysis by the study of the writings of Pascal, and
thus made his discoveries; first, in the hitherto unpublished
letter to Tschirnhaus, of the year 1679, the part of it that
relates to our subject being given later; also in a letter to
the Marquis de 'Hospital, in the year 1694 ; further, in a
postscript to a letter to Jacob Bernoulli, in the year 1703;
and lastly, in the essay, Historia et Origo calculi differen-
tialis, written in the last years of his life.

Up to the present time, among the manuscripts of Leib-
niz there has been found one of great length, that bears
the title: Ex Dettonvillaeno (?) sew Pascalii Geometricis
excerpta: cum additamentis. It is not dated; but as it con-
tains work that is in the closest connection with the writings
of Pascal to de Carcavi, hence it must be assigned very
approximately to the time of his intercourse with Huygens
(1673). This cannot be given in its entirety; only the
commencement of it follows under the heading III. One
special remark has Leibniz made on the five essays which
follow Pascal’s letter to de Carcavi; he states that the
method of Pascal for determining the surface of the
opinion on those matters about which people were speaking to him. For
example, with reference to the philosophy of Descartes, he merely said what
he thought. He was of the same opinion as Descartes concerning automatism,
but far from being so on the “subtle matter,” which he ridiculed. But he
could not put up with his (Descartes’s) method of explaining the formation
of the universe, and he often said: “I cannot pardon Descartes. In the whole
of his philosophy, he would have been highly pleased to have dispensed with
God; but he could not help making use of him to give a fillip to set the uni-
verse in motion. That being done, he had no further use for God.” (Fougére,
Lettres, Opuscules et Mémoires de Madame Perier et de Jacqueline, soeurs
de Pascal et de Marguerite Pevier, sa niéce. Paris, 1845, p. 458). [It is more
probable that Pascal used geometry, as Barrow did, because he both preferred
it and thought it more rigorous than analysis. With regard to the remark
on method, Gerhardt does not intend to convey the impression that Pascal
abandoned for the more strictly geometrical method of moments the mechan-

ical idea of the balance, with which he commences. By the way, to the best
of my belief, the word “moment” is never used by Pascal.]
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sphere,? according to which the surface of a solid formed
by the rotation round an axis can be reduced to a plane
figure proportional to it, was what induced him to make
out a general theorem applicable to all plane figures
bounded by a curved line.

T
A 12 22
% \f
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P

The coordinates of ;Y and .Y, two points on the curve,
are 1Y1Z, 1Y:1X and .Y2Z, 2Y:X; . YT is the tangent at
»Y, which is supposed to meet the curve again in ,Y, and
the normal ,YP is drawn. On account of the similarity
of the triangles ;YD.Yand ,Y,XP, we have

2 XP ., YD =,Y.X..YD;
i. e., the subnormal ,XP applied, at right angles to the axis
AX, to the element of the axis ;XX (=,YD), is equal to
the ordinate ,Y,X, applied to the element ,YD.#® “But,”

22[] have gone carefully through the “Lettres of Dettonville,” and I find
no mention of Archimedes except in one place, namely, Prop. 1 of the Traitté
des Solides Circulaires; and the whole of this is devoted to volumes of solids
and their centers. Nor can I find any place where Pascal determines the
surface of a sphere, at least not by reducing it to an equivalent plane figure,
I have however shown that Barrow does do this (see above, Chapter III, p. 58).
Surely Leibniz must be confusing the work of Pascal with that of Barrow on
quadratures, the latter being so similar to the former in places that Barrow
might easily be suspected of “borrowing” from Pascal; much more easily
indeed than Leibniz could be so suspected with regard to either, in spite of his
own assertion with regard to Pascal. See Notes 23, 24.]

23[These are far more like Barrow’s results than those of Pascal; while
the style is entirely Barrovian and quite different from that of Pascal.]
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Leibniz continues, ‘“straight lines which increase from
nothing, each multiplied by its corresponding element, form
a triangle. For, let AZ be always equal to ZC, and you
get the right-angled triangle AZC, which is half the square
on AZ, and thus the figure produced by applying the sub-
normals in order at right angles to thé axis is always equal
to half the square on the ordinate. Hence, being given a
figure to be squared, that figure is sought whose sub-
normals are equal to the ordinates of the given figure, and
the second figure is the quadratrix of the given figure.
Thus from this very simple idea, we have the reduction of
surfaces produced by rotation to plane quadratures, and
also of the rectification of curves;?* and at the same time,
we can reduce these quadratures to problems of inverse
tangents.” Thus it came about that Leibniz obtained from
this a general method for the quadrature of curves.

All this was arrived at by Leibniz in the first year,
1673/74, of his mathematical studies in regard to the
higher analysis. Until this time he had adhered to the
rigorous geometrical method, as he found it in the writings
of Pascal, in his investigations; acting on the advice of
Huygens, he now made himself acquainted with the method
of Descartes as being more adapted to computation. The
long essay of Leibniz with the title, Analysis Tetragonistica
ex Centrobarycis, dated Oct. 25, 26, 29, and Nov. 1, 1675,
shows clear connection® with the above-mentioned method

2¢[There is no rectification of curves in Pascal; the whole of this sentence
would however serve as a summary of the work of Barrow on rectification.] -

25[Gerhardt states that the Centrobaryc Method, as considered by Leibniz
in the manuscripts dated October 25, 26, 29, and November 1, 1675, shows clear
connection with the work of Pascal. He asserts that, from a consideration of
Archimedes, Pascal was enabled to extend the method of the ancients; he
does not seem to be aware of what Cavalieri had done and published as the
fifth section of his Exercitationes Sex; or else, knowing all about this, he
suppresses that knowledge for fear of discrediting the statements of Leibniz
concerning the methods of Cavalieri.

The striking points about the work of Cavalieri in question are as follows.
He opens by defining gravity as a property of a body, a descensive force. He
then defines a heavy body as one possessing this property, and in a note on
the definition, he adds that these must be taken to include surfaces, lines, and
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of Pascal; also it shows the improvement that Leibniz had
made in consequence of his study of Cartesian geometry,

points. Then he gives the definition of “moment” in its mechanical sense.
“The moment of a weight is its endeavor to descend, no matter at what dis-
tance it is hung.” This is followed by the note: “Since this moment is different
at different distances, as will be seen in what follows, it is to be understood
from this that the same weight may have different moments.” He then de-
fines uniform and uniformly variable (difformis) weights, such as a paral-
lelogram in which the density varies as some power of the distance from one
side; also he defines the centers of gravity and equilibrium. In Prop. 6 he
shows that the moments of bodies are compounded of the ratio of their weights
and the ratio of their distances. In Prop. 8 et seq., he combines the doctrine
of indivisibles with that of moments to find the centers of gravity of surfaces,
chiefly by means of “analogous figures”; thus, a uniform triangle is analogous
to a parallelogram whose “difformity is of the first species,” i. e., the density
varies as the distance from one edge. He shows that, if the difformity is of
the nth species, i. e, if the density varies as the nth power of the distance from
the edge, then the medial line is divided by the center of gravity into parts
in the ratio of 1 to n 41, although it is stated rather differently, and only
worked out for the first few values; then, using the idea of moments he pro-
ceeds from one degree to another in the case of the triangle, where the axis
of moments (limes) is a parallel to the base through the vertex, and in the
following proposition, the base itself; next the semicircle and the hemisphere
are dealt with, whether uniform or varying as the distance from the center.
In Prop. 36, he lays down the idea that the axis of moments may be outside
the figure under consideration; and then proceeds to consider cylinders, cones,
parabolic conoids, and the sphere, and truncated portions of them; and finally
he finds the moment of a portion of a hyperbola about the asymptote which is
not the base of the portion considered. It is interesting to note that Cavalieri,
when speaking of the difformity of weight, uses the phrase “tncrementum
difforme gravitatis,” i. e., the word incrementum is employed to connote a
gradual increase that follows a definite law. Also it is worthy of remark that
he employs the notation, o. ., o.p., 0. q., 0.c., etc. for “all the lines,” “all the
planes,” “all the squares,” “all the cubes,” etc.

From the above it will be seen that Cavalieri has given a fairly compre-
hensive account of the use of moments for the determination of the center of
gravity; thus he not only gives far more than Pascal, but anticipates him.
Leibniz’s matter is far more like that of Cavalieri than that of Pascal; though
he seems to be reading Pascal at the time he wrote the third part of the
“Analytical Quadrature,” by the method of moments, for the last figure in this
manuscript (see above, Chapter IV, p. 89), with the explanatory diagram
that T have added on the right of it, is strongly reminiscent of the idea of
the onglet of Pascal; although it may have arisen from Cavalieri’s work.
The great point about this batch of manuscripts of October and November,
1675, is that nearly every figure has the tangent drawn to the curve; now the
tangents are never drawn or used either by Cavalieri or by Pascal. A secon-
dary consideration, but still one of importance, is that the subject-matter of
these manuscripts is like nothing in Cavalieri or Pascal, as far as the “center
of gravity method” is concerned. As we find Pascal’s Infinitesimal Triangle
idea in the figure of Leibniz’s manuscript of October, 1674, I take it that this
was the time at which he finished reading his Pascal. Hence, I imagine that in
October, 1675, he had got a good knowledge of Descartes’s algebraical geom-
etry, and began to study Cavalieri’s Exercitationes Sex; he did not get very
far in this before he appreciated the power given by the method of moments;
then, probably wearied by Cavalieri’s prolix demonstrations, he laid the book
aside, and applied Cartesian analysis to the method of moments, running the
idea for all it was worth. If this is the case, these manuscripts represent real
original research, and are not study notes like some of the others.]
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Leibniz commences with Proposition 2 from Pascal’s first
essay, Traitté des Trilignes et leurs Onglets, which he ex-
presses as follows.

“Let any curve AEC be referred to a right angle BAD;
let ABMDCmga,* and let the last #Mb; also let BC™MAD
My, and let the last y™¢. Then it is plain that

PR — 2
omn. yx to x:éz—f—-omn. ’%Ztoy .

For, the moment of the space ABCEA about AD is
made up of rectangles contained by BC (=y) and AB
(= @) ;* also the moment about AD of the space ADCEA,
the complement of the former, is made up of the sum of
the squares on DC halved (= #?/2); and if this moment
is taken away from the whole moment of the rectangle
ABCD about AD, i. e., from* ¢ into omn.x, or from?
b%c/2, there will remain the moment of the space ABCEA.

A D AT D
x x
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Hence the equation that I gave is obtained; and, by re-
arranging it, it follows that,

omn. yx to ¥ 4+ omn. #%/2 to y = b?c/2.

26 [The misreadings of Gerhardt, as given in his Geschichte der hohe-
ren Analysis (see above, Chapter IV p. 65) are uncorrected even in 1891,
the date of this essay, thirty-six years ‘after the publication of the Geschichtel
We should have “ABm DCri4” and “AB(= #)”—see the figure on the right
(above) which is mine, while that on the left is the one that Gerhardt gives
as that of Leibniz; again Gerhardt’s “id est ac in omn.#, sive a(cb?/2),” which
makes Leibniz write nonsense, should be “id est a ¢ in omn.x, sive a cb2/2,”
the “a” being the preposition “away from” and not the length ‘of 2 line; thus
corrected we not only have a sensible reading but the whole paragraph is
correct; I have made the correction when translating. Also with regard to
Gerhardt’s statement that Leibniz starts from an alternative rendering of
Prop. 2 of Pascal’s Traitté des Trilignes, it is worthy of remark that Pascal’s
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In this way we obtain the quadrature of the two joined
in one in every case; and this is the fundamental theorem
in the center of gravity method.”

In the continuation, dated October 29, 1675, in connec-
tion with this theorem, Leibniz brings in the characteristic
triangle, which has already been mentioned above.

AGL is any curve, BL=y,

WL=1I, BP=p, AB=1, T
GW =a, y=omn.l; a
hence AR
L_p__ P M
a y omn./’ B‘ wiN L
and therefore p = omn. / g
a
Now, by the theorem given above,*
2 7 i 72
omn.p:Jf-:omn’ / :omn. / . P
2 2 2
2 —_—
hence omn, omn. omn. / £ ;
2 a

“that is,” adds Leibniz, “if all the I’s are multiplied by
their last, and all the other I’s again are multiplied by their
last, and so on as often as it can be done, the sum of all

figure is altogether different from that of Leibniz; and this is only natural,
because there is no similarity between the theorems nor is there any relation
between the methods of proof. Pascal’'s proof is equxvalent to the modern
method of a change in the independent variable by a conversion to a double
integral followed by a change in the order of integration, and is geometrical;
that of Leibniz is equivalent to integration by parts, and is merely an example
of the theorem of moments.

Thus (Pascal), [yx dx = [([x dx)dy = [Vsx2dy,
and (Leibniz), Jyx dx = [Vsx2y] — [Vix2dy;

where Pascal’s integrals are taken over the same area as one another, and
those of Leibniz over complementary areas. It seems therefore ridiculous to
say that “Leibniz commences with Prop. 2.... which he expresses as fol-
lows.”]

27[This means the result obtained geometrically by means of the triangle
AZC, in the passage to which Note 23 refers.]
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these will be equal to half the sum of the squares, of which
the sides are the sums of these, or all the [’s. This is a
very fine theorem, and one that is not at all obvious. So
is also the theorem,

omn. #/7x.omn. | — omn.omn. [,

where [ is supposed to be a term of a progression, and x
the number which expresses the position or ordinal that
corresponds to the /, i. e., # is the ordinal number and [ the
ordered quantity.

N.B. In these calculations, a law for all things of the
same kind may be observed; for, if ‘omn.” is prefixed to a
number or ratio, or to something indefinitely small,*® then
a line is produced, also if to a line, then a surface, or if to
a surface, then a solid; and so on to infinity for higher
dimensions.

It will be useful® to write f for ‘omn.,” so that

f1 = omn. [, or the sum of all the I’s.

Thus, 5= JSTL, and SalefT-ff0.7

This was the first time that the algorithm for the higher
analysis was introduced. In what then follows, Leibniz
obtains the first theorems of the integral calculus:

Jx=2"/2, fx* =2"/3,

and adds, “All these theorems are true for series in which
the differences of the terms bear to the terms themselves
a ratio which is less than any assignable quantity.”

Further Leibniz remarks: “These things are new and
noteworthy, since they lead to a new kind of calculus. Being
given [, and its relation to x, required to find fI. Now this
may be obtained by a reverse calculation; thus, if fI= ya,

28[The connection between number, ratio, and infinitesimal is peculiar.]

20[Note the word “useful” (utile): the “long s” is introduced merely as
a convenient abbreviation in accordance with Leibniz’s usual idea of obtaining
simplification by means of symbols.]
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suppose that [ = ya/d, that is to say, as [ increases the
dimensions, so d will diminish them; but f stands for a
sum, and d for a difference.®® From the given value of y,
we can always find y/d or [, or the difference for the y’s.”

In the investigation that bears the title, Methodi tan-
gentium inversae exempla, dated November 11, 1675, Leib-
niz introduces instead of y/d the notation dy.

Such are the chief points in the story of the introduc-
tion of the algorithm of the higher analysis, as far as may
be gathered from the extant manuscripts of Leibniz.*!

In connection with the earlier essay, “Leibniz in Lon-
don,”** T have shown that any influence whatever from
external sources upon Leibniz with regard to the intro-
duction of the algorithm of the higher analysis is excluded.

30[T have discussed this fully in my translation of Gerhardt’s essay, “Leib-
niz in London” (see above, Chapter VI, p. 180). I have shown there that

at least it is highly probable that the d in #/d stands for a certain length,
namely the subtangent.]

31[Note that, in spite of Gerhardt’s opening remarks about the algorithm
of the calculus bemg due to reading Pascal, the symbols of integration and
differentiation have not been mentioned in anythmg quoted by Gerhardt in this
essay, except in the paragraph just above.]

82 [See critical notes on this point, Chapter VI, pp. 172-184. T believe
some of those who read what is there given will, while giving Leibniz full
credit for the introduction and dewvelopment of the symbols [ and d, that
made the calculus of Leibniz the powerful instrument it was, still find it hard
if not impossible to agree with Gerhardt in his assertion that the ideas of
Leibniz were not very strongly influenced by the best points of every single
author that he studied, and more especially by the Lectiones Geometricae of
Barrow and the Exercitationes Sex of Cavalieri.]
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TRANSLATIONS OF THE MANUSCRIPTS

Alluded to by Dr. Gerhardt.

I.

From the letters of Leibniz to Tschirnhaus.
1679.

“You are astonished that Reginaldus®® should have been able
to fall into error over the surface of an elliptic spheroid; but you
do not seem to have considered sufficiently how different are the
several methods of indivisibles. He certainly understands the
Cavalierian method, but that is so circumscribed by narrow limita-
tions that few things of any great importance can be obtained from
it. There is no doubt that Cavalieri, Torricelli, Roberval, Fermat,
and indeed, as far as I know, all the Italian mathematicians were
quite unaware of the utility of tangents for the purpose of finding
quadratures, or of that which I have been accustomed to call the
infinitely small “characteristic triangle” of the figure; indeed, at
the present time also in France, I believe that Huygens is the only
man that really understands these matters.® Pascal himself could
not sufficiently express his admiration for the artifice by which
Huygens found the surface of the parabolic conoid. Sluse has
given no example of these things, by which I am inclined to think
that they are unknown to him also. This too is the reason why
Huygens and Gregory demonstrated such theorems by roundabout
methods, suppressing their analysis, in order not to divulge their
method at once so easy and so fruitful.

33[So far I have failed to find any information as to the error into which
Reginaldus fell; he does not appear to be mentioned by either Cantor or
Zeuthen.]

8¢ [The Geometry of Cavalieri is indeed practically all quadratures; but
Torricelli himself says (quoted by Tommaso Bonaventura in his preface to an
edition of the Leszione Accadewmiche, 1715), in his preface to a Tract on Pro-
portion, that he has used indivisibles for tangents as well as for quadratures;
Roberval, through his own efforts at concealing his methods, we know com-
paratively little about; but the germ of Fermat’s method is the same as that
of Barrow’s, namely the Differential Triangle; lastly it is probable that Huy-
gens’s knowledge was considerably more than he let anybody know (and so
too with Gregory)—cf. Leibniz’s words, “suppressing their analysis,” a few
lines later. It is to be observed that Leibniz deliberately speaks of the mathe-
maticians of France and Italy only; “at the present time,” 1679, he must have
been aware that Barrow had complete geometrical knowledge, at any rate, of
all the matters in question.]
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“The prime occasion from which arose my discovery of the
method of the Characteristic Triangle, and other things of the same
sort, happened at a time when I had studied geometry for not more
than six months. Huygens, as soon as he had published his book
on the pendulum, gave me a copy of it; and at that time I was
quite ignorant of Cartesian algebra and also of the method of in-
divisibles,®® indeed I did not know the correct definition of the
center of gravity. For, when by chance I spoke of it to Huygens,
I let him know that I thought that a straight line drawn through
the center of gravity always cut a figure into two equal parts; since
that clearly happened in the case of a square, or a circle, an ellipse,
and other figures that have a center of magnitude, I imagined that
it was the same for all other figures. Huygens laughed when he
heard this, and told me that nothing was further from the truth.
So I, excited by this stimulus, began to apply myself to the study
of the more intricate geometry, although as a matter of fact I had
not at that time really studied the Elements. But I found in prac-
tice that one could get on without a knowledge of the Elements,
if only one was master of a few propositions. Huygens, who thought
me a better geometer than I was, gave me to read® the letters of
Pascal, published under the name of Dettonville; and from these
I gathered the method of indivisibles and centers of gravity, that
is to say the well-known methods of Cavalieri and Guldinus. I
immediately committed to paper certain things that occurred to me
as I read Pascal, of which I now find that some are absurd, others

35[The Horologium was published in March or April, 1673, and the pres-
entation of a copy to Leibniz was undoubtedly made after his return from his
first visit to London (Cantor says that the dedication was dated March 25,
1673; see Cantor, I1I, p. 138). Hence, the date at which Leibniz obtained the
Characteristic Trxangle can be assigned to some time at least not later than the
beginning of October, 1673; and therefore the inclusion of this in the manu-
script dated Aug., 1673 (see above, Chapter IV, p. 59), marks the exact date
of its discovery.]

36 [In the “Bernoulli postscript” (see p. 14) Leibniz states that he “sought
a Dettonville from Buotius, a Gregory St. Vincent from the Royal Library, and
started to study geometry in earnest.”” In the Historia (see p.37) Leibniz says
that “in order to obtain an insight into the geometry of quadratures, he consulted
the Synopsis Geometriae of Honoratus Fabri, Gregory St. Vincent, and a little
book by Dettonville (Pascal).” In his letter to the Marquis de lHospltal he
says, “At the start I only knew the indivisibles of Cavalieri, and the ‘ductions’
of Father Gregory St. Vincent, along with the ‘Synopsis of Geometry’ of
Father Fabri” (see below, p. 220) I suggest that the correct explanation of
these inconsistencies is that he did get the Dettonville from Huygens as
stated here, the St. Vincent from the Royal Library, and the work that he ob-
tained from Buotius was the Exercitationes Sex of Cavalieri.]
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please me very much even at the present time.?” Amongst other
things, I tried to find a new sort of center. For, I thought that
if, to any figure that was given, others that were similar and simi-
larly placed were inscribed, then a “middle point” could be found,?®
at which the figure evanesced, and that being given this point the
quadrature could be obtained; later I perceived the difficulty that

made this method ineffective. But to return to the subject, I will
tell you how I came to find the method of the Characteristic Tri-
angle. Incidentally Pascal gave a proof of the dimension of the
spherical surface proved by Archimedes, that is the moment of a
circular curve round the axis,* and showed that the radius applied
to the axis produced this moment. I, having examined the demon-
stration with care, observed that, with the aid of the infinitely
small characteristic triangle, it was possible to prove the following
_general proposition for any curve:*°

37[1 think the passage throws considerable light on the character of these
manuscripts, besides explaining how it was that Leibniz seems to have taken
a very long time to study the works of the authors mentioned. I look on
these manuscripts, not as “study notes” merely, nor yet as true “research,” but
as a mixture of each. I suggest that there is quite enough evidence to make it
safe to assert that the characteristic of Leibniz’s method of study was to read
a very small portion of an author at a time, then to break off and follow out
the train of ideas suggested to him by the passage to the furthest limit, before
proceeding further with his reading; thus he is led to his own original devel-
opments. For instance, note in the next sentence how he says he “tried to
find a new sort of center.” This is very characteristic; he is not satisfied
with merely acquiring knowledge, even at this early stage, but at once seeks
to utilize each point, as he grasps it, to obtain something new, something
original previously undiscovered. Cf. the study notes on the work of Pascal,
given below under III.]

38[That is, a “homothetic center.”]

39[As I have been unable to find the word “moment” defined, or even
mentioned, in any place except in the Exercitationes Sex of Cavalieri, I sug-
gest that this is fairly good circumstantial evidence for the reading of this
work by Leibniz before he discovered the.theorem in question.]

40[Observe that this is not the figure used in the manuscript of October,
1674 (see above, Chapter IV, p. 62), the latter being a diagram that one
would naturally expect him to have obtained from the figure in the lemma that
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“Let AP be any curve and let BP be drawn perpendicular to
its tangent AT, to meet the axis in B; then, the ordinate PC being
drawn, let the straight line CD be applied to the axis AC, perpen-
dicular to it, and equal to BP. Then if a curve is drawn through
all such points as D, we shall have a figure whose area will be the
moment of the original curve about the axis, i. e., it will show how
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to draw a circle equal in area to that of the surface of a curve
totated round the axis. Since in the circle the straight line BP
1s always of the same length wherever the point P is taken in the
curve, hence the figure produced by the perpendiculars** applied to
the axis is a rectangle, and thus the surface of the sphere is very
easily reduced to a plane area. Now, when from this method I
had deduced a general method for the dimensions of such surfaces,
I at once took it to Huygens; he was surprised and laughingly
confessed that he had made use of precisely the same method for
obtaining the surface of the parabolic conoid of revolution. For
in that case the curve through every D is a parabola, and hence the

commences Pascal’s Trattté des Sinus du quart de Cercle (cf. Note 6, p. 196) ;
but is a figure such as one would expect Leibniz to abstract from those given
by Barrow, either from Lect. XII, prop. 1, 2, 3, or from Lect. XI, prop. 1
(see Chapter IV, p. 58, and Chapter I, p. 16, respectively. In the latter especially
we have the right-angled triangle used by Leibniz on page 39, quoted by
Gerhardt in the article translated in the present number). I therefore suggest
that Leibniz worked at Barrow and Pascal conjointly, and applied Descartes’s
analysis to their geometrical theorems. If this is not the case, Leibniz was at
fault, for Pascal was discussing sines and not ordinates (see Note 18, p. 202) ;
i. e., Pascal was integrating with regard to # and not with regard tosx. Observe
also that the figure as given is not correct; the rectangle should be that having
AC, CD as adjacent sides.]

#[Note that the area is taken to be produced by the assemblage of lines
applied in order, in the true Cavalierian style.]
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figure is capable of quadrature. Since I wished to verify the
accuracy of my result in the case of the parabola,*? T began to look
for a method of expressing spaces and curves by reckoning, and then
for the first time I really understood those matters of which Des-
cartes wrote. For, previously, I used to calculate in my own way,
using not letters but the names of lines. Then, for the first time,
I read Descartes and Schooten carefully, acting on the advice of
Huygens, who told me that the method of reckoning adopted by
these authors was very convenient. Meanwhile having once opened
the door provided by the characteristic triangle, I very easily dis-
covered innumerable theorems with which at that time I filled in-
numerable sheets; but later I found that these had also been noted
by Huraet, Gregory, and Barrow.** Moreover all these things I
came upon in the first year of my apprenticeship to geometry. But
after that I struggled forward to far greater things, such as I believe
that neither Gregory nor Barrow could ever have reached by their
methods, far less Cavalieri or Fermat.** About the same time,
since I perceived that the finding of quadratures could be reduced
to the finding of sums of series, and that the finding of tangents
could be reduced to the finding of differences, I put together the

42[Query: urged thereto by a question on the part of Huygens, as to
whether Leibniz could now find the properties of the auxiliary curve (see p. 18).]

43[This fits in perfectly with my suggestion that Leibniz attacked Barrow’s
Lectiones at several different times. Having, as I think, taken Barrow’s
advice given in the preface, he sampled the first few propositions of each
lecture, and obtained from those of Lect. XI and XII his Characteristic
Triangle. This could I think have been definitely settled if Gerhardt had only
given the figure used by Leibniz in the manuscript dated August, 1673. As-
suming for the time being that my suggestion is correct and that Leibniz is
merely confusing the author that he read at this time, I suggest that charac-
teristically he broke off his reading of Barrow, pursued the idea he had ob-
tained, and made out those theorems on quadratures that he speaks of; this
so improved his geometry that later he was able to read Barrow thoroughly
and appreciate all that was in it, and to find that his theorems had been antici-
pated. I also suggest that it was on this second or third reading that he
came across the theorem that led to his Arithmetical Tetragonism. A fresh
reference to Barrow to find if there were any other ideas that he could develop,
considerably later, having already found him a mine of information, would
then probably be the occasion on which the marginal notes in his own notation
were inserted by Leibniz.]

44[Leibniz seems to have got these men in true perspective, Cavalieri,
Fermat, Gregory, and Barrow, as far as the infinitesimal calculus is concerned.
But I doubt whether he, even after he came to his fullest appreciation of
Barrow’s geometrical theorems, or indeed any other person except Bernoulli,
ever appreciated the real inwardness of these theorems, or that Barrow’s.tan-
gent problems could be used, in the manner I have shown in the appendix to
my Barrow, to draw a tangent to any curve given by an equation in either
Cartesian or polar coordinates.]
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fundamental principles of my new calculus,* which I call the “dif-
ferential or tetragonistic calculus,” by which I can set with a few
little lines those things which could be obtained with great difficulty,
if indeed at all, by the help of a mighty apparatus of lines. More-
over I considered in general that the finding of the sum of any
series was nothing else but the discovering of some other series,
the differences of the terms of which gave the given series, and this
other series I used to call the summatrix.*® The occasion for con-
sidering infinite series arose from the work of Wallis and Mercator.*
When I joined their discoveries to mine, I found out new things
with no trouble at all.

“At length, when I considered that problems of quadratures
might not be of known degree, and yet might be reduced to equa-
tions, in which the exponents of the powers were unknowns, a new
light dawned upon me and I began to understand that this was
something beyond the ordinary analysis, and I called it transcendent,
because it employed equations beyond all degrees; and I see that
this method, almost alone of its kind, gives a method of determining
whether particular problems of this kind are possible or not. In-
deed T can easily prove in other ways, and also by the differential
calculus more especially, the impossibility of general quadrature of
the circle, or that no algebraical line can be given as its quadratrix.
What I call algebraical lines are those that Descartes calls geo-
metrical, and by quadratrices I mean all curves that, being described,
will give the quadrature of any portion of a circle whatever. But
the manner of finding the impossibility of any particular quadrature,
for instance that of the whole circle, is known to me indeed in two
ways, the one by the calculus of transcendent exponents, the other

45[This I take to mean the principle that differentiation and integration
are inverse operations; for it is practically certain that in November, 1675, he
could not differentiate a product; otherwise, as previously argued, he would
have verified his solution of the unfortunate equation, x -+ y2/2d = a2/y, which
he gives as

(y2 + #2) (a* —yx) = 2y? Log y,
by differentiation, as he did with a previous solution that did not contain a
product.]

46[From this probably arose the first germ of the idea of the Quadratrix,
in the sense used by Leibniz.]

47[Substitute Barrow and Mercator in conjunction, and we have a feasible
suggestion for explaining the first method of proof for the Arithmetical Quad-
rature of the Circle; the method that Leibniz does not seem ever to have
divulged.]
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by a certain new kind of calculus, embracing all cases, which has not
entered the mind of any one before even in his dreams.*®
“Here you have the story of some of my meditations. ...

”

II.

From the correspondence between Leibniz and the Marquis de
U'Hospital.

1694.

“I recognize that M. Barrow has advanced considerably, but
I can assure you, Sir, that I have derived no assistance for my
methods (pour mes methodes).*® At the start I only knew the
indivisibles of Cavalieri,”® and the ‘ductions’ of Father Gregory St.
Vincent, along with the “Synopsis of Geometry” of Father Fabri,
and what could be derived from these authors and their like.
When M. Huygens lent me the “Letters of Dettonville” (or Pascal),
I examined by chance® his demonstration of the measurement of
the spherical surface, and in it I found an idea that the author had

48[ Tt is impossible for me to conjecture exactly which of his ideas is here
referred to by Leibniz; for he calls a mere method by the name of “a cal-
culus,” and what we should call a dodge for some particular kind of example
by the name of “a method.” I think it may be possible that the “transmuta-
tion of figures” is referred to.]

49[Notice that Lelbmz says that he has not derived any help from Barrow
for his methods (je w'ay tiré aucun secours pour mes methodes). This is less
even than he might have said with perfect truth; for the methods of Barrow
would have been a veritable hindrance to Leibniz’s analytical development.
Even when using the Differential Triangle method, and literals for the lengths
of his lines, the whole of the working is geometrical in the examples of the
method given by Barrow, and not analytical.]

50[See Notes 35, 36.]
51[ Perhaps this is meant to include Barrow.]

52[Notice the words “by chance” (par hasard) ; these seem to point to a
conclusion that Leibniz read the Pascal in a very desultory manner; this con-
clusion gets corroborated by the extract given by Gerhardt under the heading

CIII. Tt is worthy of remark that the “by chance,” or “incidentally” (as I have
rendered Leibniz’s word forte in the letter to Tschirnhaus), is made to refer
to Pascal. “Forte Pascalius demonstrabat,” etc., i. e., “Incidentally Pascal was
proving,” etc. I think it may be asserted that Pascal missed absolutely noth-
ing that was pertinent to his purpose; whereas Barrow certainly missed the
opportunity of being the discoverer of the series for the inverse tangent, and
thereby the quadrature of the circle, by not applying Mercator’s method of
division and integration to the result of one of his examples of the Differential
Triangle method; as also after giving the method of “transmutation of figures”
he missed those thmgs to which it led.]
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altogether missed; for I remarked that in general, by the same
reasoning, the perpendiculars PC, when applied to the axis or set
in the position BE, give a line FE, such that the area of the figure
FABEF will furnish a development (explanation) of the surface
formed by the rotation of AE about AB.

A
.
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“Huygens was surprised when I told him of this theorem, and
confessed to me that it was the very same as he had made use of
for the surface of the parabolic conoid. Now, as that made me
aware of the use of what I call the “characteristic triangle” CFG,
formed from the elements of the coordinates and the curve, I thus
found as it were in the twinkling of an eyelid nearly all the theo-
rems that I afterward found in the works of Barrow and Gregory.
Up to that time,% I was not sufficiently versed in the calculus of
Descartes, and as yet did not make use of equations to express the
nature of curved lines ; but, on the advice of Huygens, I set to work
at it, and I was far from sorry that I did so: for it gave me the
means almost immediately of finding my differential calculus.* This

83 [In a manuscript dated October, 1674 (see above, Chapter IV, p. 61),
Leibniz is using # and y for the variable ordinate and abscissa; while n
a manuscript dated August, 1673, he considers “the classification of curves
laid down by Descartes.” In this manuscript, according to Gerhardt, Leibniz
has already constructed the “characteristic triangle,” but Gerhardt does not
give the particular variant that Leibniz uses in this manuscript. I believe that
this will prove to be of the Barrow type, when reference can be made to the
original; for the title of the manuscript is strongly suggestive of Barrow,
being: Methodus nova investigandi Tangentes. .. .ex datis applicatis, etc.; and
Pascal’s work does not mention tangents.]

5¢[That is, as the Characteristic Triangle, leading to integrations, is
ascribed to the influence of the work of Pascal, so the Differential Calculus is
ascribed to the influence of the work of Descartes. Is this the diplomatic
characteristic in Leibniz peeping out? He is writing to a Frenchman, and
attributes his work to the respective influences of two Frenchmen. Note that
Leibniz goes on to state that the source of inspiration was summation of series
by differences, suggesting the origin of the symbol dx.]
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was as follows. I had for some time previously taken a pleasure
in finding the sums of series of numbers, and for this I had made
use of the well-known theorem, that, in a series decreasing to in-
finity, the first term is equal to the sum of all the differences. From
this I had obtained what I call the “harmonic triangle,” as opposed
to the “arithmetical triangle” of Pascal; for M. Pascal had shown
how one might obtain the sums of the figurate numbers, which
arise when finding sums and sums of sums of the natural scale of
arithmetical numbers. I on the other hand found that the fractions
having figurate numbers for their denominators are the differences
and the differénces of the differences, etc., of the natural harmonic
scale (that is, the fractions 1/1, 1/2, 1/3, 1/4, etc.), and that thus
one could give the sums of the series of figurate fractions

V+Y%+Y+Yo+ete,  W+Yi+Yo+Y%o+etc.

Recognizing from this the great utility of differences and seeing
that by the calculus of M. Descartes the ordinates of the curve
could be expressed numerically, I' saw that to find quadratures or
the sums of the ordinates was the same thing as to find an ordinate
(that of the quadratrix),’ of which the difference is proportional to
the given ordinate. I also recognized almost immediately that to
find tangents is nothing else but to find differences (differentier),
and that to find quadratures is nothing else but to find sums, pro-
vided that one supposes that the differences are incomparably small.
I saw also that of necessity the differential magnitudes could be
freed from (se trouvent hors de) the fraction and the root-symbol
(vinculum), and that thus tangents could be found without getting
into difficulties over (se metire en peine) irrationals and fractions.5®
And there you have the story of the origin of my method....”

[At this point Gerhardt quotes his article, Leibniz in London,
and a long passage from the Historia, in corroboration of the fore-
going letters. I have omitted them as I have already, in my notes,
pointed out the points of resemblance, and the slight differences,
between the several accounts that Leibniz gives.]

85[In the manuscripts that we l}avé had under consideration, Leibniz does
not appear to have made any practical use of the Quadratrix.]

56[It is precisely this point which formed the really great improvement in
the reckoning section of the infinitesimal calculus. It is just this improvement
that is due to Leibniz in analysis, and to Barrow in geometry; although Leib-
niz did not accomplish anything of the kind until 1676 or 1677. Newton’s
method by means of series for fractions and roots does not bear comparison,
let zlicltine the futility of ascribing Leibniz’s method to a perusal of Newton’s
work.



LEIBNIZ AND PASCAL: GERHARDT. 223

III.

Extracts from the geometry of Dettonville or Pascal; with additions.
Ca. 1673.

1234 If A, B, C, D, are quantities, their triangular
A B C D sum, starting with A, is 1A, 2B, 3C, 4D.

BCD If BC is any straight line divided into any num-

C D  ber of equal parts, and any weights, equal or unequal,

D  are suspended at the points of division, and A is sup-

posed to be their point of equilibrium, it is necessary

that the triangular sum of the weights on the one arm AB should

be equal to the triangular sum of the weights on the other arm AC,

where the triangular sum on either side starts from the inner point

or from the side A. The reason is that the weights give an effect

B A c
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that is compounded of the ratio of the weights and their 'distances
from the center. But these distances, on account of the division
of the straight line or beam of the balance into equal parts increase
as 1, 2, 3, etc.

This is what Pascal says; to which I add the following remarks.

Even if the triangular sums on either side of the point are not
the same, that is if the two arms are not in equilibrium, yet the
moments will always be to one another as the triangular sums,
for the moments are always equal to triangular sums.*” Hence the
far more general rule: If any straight line is divided into any num-
ber of equal parts, and weighted with any number of weights sus-
pended at the points of division, and if any point of division is taken
to be A, then will the moments of the weights on the one arm BA
be to the moments of the weights on the other arm CA as the tri-

57[ All that is any good in the following is to be found in Pascal; I think
this corroborates the suggestion I have made as to Leibniz’s way when studying
a book. It looks here as if he had read about twenty pages of Pascal, and
about the same number of pages of Cavalieri’s section on centers of gravity;
moved thereto probably or possibly by Pascal’'s remark “....the principle of
indivisibles, whxch cannot be rejected by any one having pretensxons to rank
as a geometer.” Then he proceeds to work out his own combination of the
two ideas, without bothering to see what else either of these authors had to
say on the matter.]
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angular sums starting from that weight which is nearest to A on
each side.®® Also when any figure, i. e., a line, a surface, or a solid,
can be put in such a position that a certain line in it can be taken
as parallel to the horizon, that straight line can be taken as a balance,
and all the points or all the straight lines or all the planes (where
the points in the line are assumed to be placed horizontally, or
lying in planes of these points set perpendicular to the horizon),
may be considered as weights; and thus, if the quantity or pro-
gression of these weights is known, and consequently their triangular
sum, then the center of gravity of the figure is known; not indeed
its position in the figure, but its position in the straight line that
has been taken. The center of equilibrium in the figure itself is of
this nature: namely, that a straight line passing through it will cut
the figure into two parts, such that on each side the triangular sums
of the points, straight lines, or horizontals of the solids are equal
to one another. Hence the center of gravity of the whole figure
being found, the centers of gravity of arms of this kind supposable
without the figure may be obtained; for, let the figure be A, and

A c &
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let there be taken a line parallel to the horizon in which is the center
of gravity B, and suppose that the center of gravity of it is placed
above a horizontal style or suspended by a thread: then it is plain
that the figure will be in equilibrium. But if it is in equilibrium,
then the straight line CD, drawn through the center of gravity, will
cut the figure in such a fashion that the triangular sums on each
side are equal; and if moreover another straight line perpendicular
to CD is supposed to be divided into an infinite number of parts
by the infinite parallels to CD, the triangular sums of the infinite
rectangles on each side will be equal to one another, for by hypoth-
esis the rectangles can be supposed to be suspended as weights from
EF as a balance at the points of division (from which it is clear that

68[Leibniz tacitly assumes that all the points are occupied; this is necessary
for the success of the notion of triangular sums.]
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the suspended weights need not necessarily be understood to be
perpendicular to the horizon, but they may be parallel to it). This
being the case, the position of the figure may be changed from the
horizontal to the perpendicular, and AG become the balance; in
which case it is clear that the point of equilibrium will fall at C,
since the triangular sums are by hypothesis equal on each side of it.
Hence, given the center of gravity of any figure, and assuming a
balance either without or within the figure, to which the figure is
supposed to be rigidly attached, the point of equilibrium can be
found in it, by merely drawing a perpendicular to it through the
center of gravity; for this will cut the balance in the point of equi-
librium. On the other hand, if the points of equilibrium of two
balances for the same figure are given, the center of gravity for the
figure can be found (whether it is within or without the given
figure; for sometimes the center will fall within the given figure;
and sometimes without, as in the case of annular figures, or curved
lines, or other incomplete things) ; that is to say, at the point of
intersection of two perpendiculars drawn from those two balances
toward the same parts, in the same plane, if the figure is a plane
figure, i. e, if the balances are in one and the same plane; but if
the two balances are not in the same plane, there is need for three.
This is to be investigated.®

But the following is a better way: Suppose that the figure is
first affixed to one balance, and let the plane through the common
perpendicular be the balance and the horizontal be drawn through
the point of equilibrium to cut the figure; then let the figure be
affixed to another balance, and once more let another plane be
drawn to cut the figure; the intersection of these two planes will
give a straight line which will contain the center of equilibrium.
If now a third balance is taken in addition, or a third plane, the
point of intersection of all the planes, or the point in which the
third plane cuts the line already found, will be the center of equi-
librium. But if the figures are planes, then two balances and two
perpendiculars are sufficient ; and also if they are curved lines that
lie all in the same plane.

Now it is worth while noting several things in those cases in
which the balance is not divided into equal parts; for it may

59[ Something very like this is indeed investigated fairly thoroughly in a
manuscript dated October 25, 1675 (see above, Chapter IV, p. 65). Hence
these extracts from Pascal were certainly made before that time, though
probably not long before.]
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happen that we may know in some way or other the sums of the
weights and their progressions, but they are such that, when applied
to the balance, they divide it into unequal parts; in that case the
progression of the parts into which the balance is divided has to be
investigated, as for instance if it is divided into parts that con-
tinually - increase according to the squares or otherwise. Thus, if
we wish to suppose that the weights are equal, while the balance is
divided into parts that increase as 1, 2, 3, 4, etc., and yet that this
case may come under the rule, we must proceed in this way. Sup-
pose that that point of equilibrium is already found and that it is
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2, say; then it is clear that, starting from the point 2 assumed to
be the center, the arms should be numbered, and that the point 1
should be marked with the number 2, and the point P with the num-
ber 3, and on the other side the point 3 should be marked with the
number 3, and the point 4 with the number 7. Now, supposing
that the weights are multiplied by the numbers of their own points
or arms, it is necessary that the product obtained should be equal;*
but if it is not, then another point must be sought (or something
should be added to, or subtracted from, the weights; for instance,
in this case, if the weights are 2, 3 should be supposed to be doubled,
or in place of 1,1 we write 2,2 underneath, then there would be
an equilibrium on each side, of 10). But to obviate the necessity
of going through all the points, a formula should be sought; but if
no known progression can be employed for the weights and the
parts, a formula will be impossible ; but when a known progression
can be obtained, then a formula can be found as far as the nature
of progression will allow. But the greater part of the difficulty will
vanish in those cases in which the weights can be assumed to be
equal. What is more, a very simple general rule has been found
which is the reciprocal to that of Pascal, namely, that a point may

60[ This is the rendering for “productum fieri aequale” ; he probably means
that what is produced on the one side, i. e., the sum of the moments on one

side of A, should be equal to the sum of the moments on the other side. But
this endeavor to obtain something new seems rather futile.]
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be assumed such that the triangular sums of the numbers on each

arm, always starting from the end and going toward the middle,
are equal...... 6

61[Tt would have been interesting to have seen what this simple rule was.
Probably nothing more than the propositions given by Pascal as Prop. 1, 2, 3 of
his method of the balance; this would corroborate my suggestion that Leibniz
did not study Pascal very steadily or thoroughly (cf. Notes 37, 43, 52, 57 on
pp. 216, 218, 220, 223 respectively).]



VIIL
CONCLUSIONS.

The notes and criticisms that I have made in these six
chapters on the manuscripts of Leibniz may give the im-
pression that I am an anti-Leibnizian. This is quite wrong.
My prime object was to show, to the best of my power,
that the charges of plagiarism brought against Leibniz
by partisans of Newton, and indeed by Newton himself
in the Recensio published in the Philosophical Transactions,
were unfounded. I considered that the charges in the
Recensio were perhaps the hardest to be answered, since
they were not only direct charges, backed with circum-
stantial evidence, but they were also set forth very cleverly.
Also I thought that the method of defense adopted by Ger-
hardt and other partisans of Leibniz did as much harm to
him as the strongest attack of avowed opponents, such as
Sloman. The weak case made out by Gerhardt is deplorable.
Never surely did any man have such a glorious opportunity
as Gerhardt, in the whole history of scientific controversies;
surely there never was an advocate who left himself so open
to the attacks of the opponents. Gerhardt starts with the
theory that every single word of Leibniz represents gospel
truth; and that it is almost blasphemy to doubt it; in conse-
quence he is soon in difficulties when it comes to reconciling
the varying statements of the sequences of events that are
made by Leibniz at different times. But, once the idea
is accepted that Leibniz, while perfectly reliable on the
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general run of events, is unreliable when it comes to un-
important details, and then all difficulty disappears. |
therefore set out with the determination to break down,
if I could, the credibility of Leibniz as a witness in his own
defense, when it came to unimportant details; then to show
that he had opportunities for obtaining everything neces-
sary to the development of the Calculus, that he could not
be expected to supply for himself by original work, with-
out having need to know anything of the work of Newton;
then to show that these sources of information were set
out in a form far more suitable to the requirements of
Leibniz than the work of Newton; finally, to clinch the
matter, that the analogy of Leibniz’s work was so close
to these sources, that it was idle to suppose that he made
use of any other sources. In other words, (i) the Analysis
per aequationes was unnecessary to Leibniz, (ii) Newton’s
method of evading fractions and roots by means of infinite
series was clever, but futile for the needs of Leibniz when
developing an operational calculus.

The unreliability of Leibniz with regard to detalls may
be in some measure due to his apparently bad memory
(which is suggested by his habit of committing everything
to writing), and to passage of time. But in a far greater
degree it must be ascribed to the circumstances and char-
acteristics of Leibniz. We know that he designed to com-
pile an encyclopedia of all science, and for this he con-
sidered not at all the nationality or the personality of the
discoverer or the author: all he was interested in were the
facts or principles discovered.

That he was unreliable with regard to details is proved
by the facts I have adduced:

i. the confusion between Mouton and Mercator in the
account of the assertion that he had been anticipated (see
above, Chapter III, p. 36, and Note 73, p. 37);
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ii. the varied assortment of figures that he gives to illus-
trate how he found the Characteristic Triangle (see above,
Chapter III, pp. 15 and 39, and compare them with the
figures, given in the accounts quoted by Gerhardt in his
essay “Leibniz and Pascal,” on pp. 211, 217, and 221) ;

iii. the circumstantial detail of the context of the Archi-
medean measurement of the surface of the sphere being
absent from the author he quotes;

iv. the several different accounts of the order in which
he obtained his different books for study, and even the per-
sons from whom he obtained them;

v. the error with regard to the time of the presentation
of the copy of the Horologium (see above, Chapter III,
p. 36, where, in the Historia, it is stated that he received
it before he left for England on his first visit) ;

vi. the confusion as to the date at which he obtained
his Barrow (see above, Chapter II, p. 20, where, in the
Bernoulli postscript, he states that he found the greater
part of his theorems anticipated in “Barrow, when his Lec-
tures appeared”) ;
and many other things, all unimportant details singly; but,
when taken in combination, they show distinctly that we
must only take Leibniz’s word as accurately describing the
general course of events.

Another characteristic of Leibniz seems to have been
insistent at all times; he burned to distinguish himself as a
discoverer of new things. I have suggested that there may
have been an ulterior motive to this desire, namely, to get
himself taken into the select circle of mathematicians who
corresponded with one another. Thus, when he studied an
author, and came across some new idea, he would break
off his reading to follow that idea to the limit and exhaust
all its possibilities, committing his results to writing,
whether they were important or not; there is some evi-
dence, too, that while doing this, he would refer to other
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authors who had discussed the point under consideration,
before returning to his reading.

My motive in trying to show that he got everything
from Barrow, except his methods, was to remove any
charge of plagiarism; for, I consider that even if he had
merely rewritten Barrow in terms of Descartes, adding his
own notation for the sake of convenience, he would still
have done a great thing, and would no more have been
guilty of plagiarism from either Descartes or Barrow than
Stephenson was from Watt, or Parsons from either of these.
Leibniz’s Calculus was his own, and would have been his
own even on the supposition above. Lastly, it was not only
more complete than that of Newton, in that it was an
operational calculus, though it did perhaps miss the idea
of rate; but also from an intellectual standpoint it was
greater, in that it was developed, after its first principles
were found out, as a practical theory, while Newton’s was
developed as a mere instrument for his own purposes.

Assuming, then, that Leibniz did not remember, or did
not really care, what his text-books were, so long as he
was not accused of using somebody else’s methods, T will
try and reconstruct the progress of his reading and his dis-
coveries. His text-books were,

i. Lanzius and Clavius in algebra, and Leotaud for
geometry, in his early youth; he also looked through, more
or less without understanding them, Descartes and Cava-
lieri’'s Geometria Indivisibilibus.

ii. On his return from London he brought back with
him Barrow, some portions of which he had glanced at in
London and on his journey ; he obtained Pascal, St. Vincent,
and Cavalieri’s Exercitationes Sex, perhaps a little later
than the others; besides these, Wallis and Mercator spe-
cially.

He read portions of the Barrow afresh, and obtained
the Characteristic Triangle, and found his general theorem
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from this; meanwhile he is also studying Descartes, and we
have the materials for the manuscript of August, 1673.
Probably he has had a look through Pascal during this
time. He remembers the similarity between the compli-
cated diagrams of Barrow and some of those of Pascal,
and starts studying the Traitté des Sinus, in which he finds
the second variant of the differential triangle that appears
in the manuscript of October, 1674. Previous to this, how-
ever, his attention has been arrested by Barrow’s proof
of the inverse nature of the operations of finding a tangent
and an area, and the analogy between this and sums and
differences strikes him. He has also considered the exam-
ples on the differential triangle given by Barrow; one of
them suggests the method of Mercator to him, he has
already got an idea from Wallis of the summation of the
several powers of the variable; he applies this to Barrow’s
expression, equivalent to

d(tan™'x)/dx =1/(1 + 2?),

in modern notation, performs the division as Mercator had
done, and obtains the series for the inverse-tangent by a
summation according to Wallis, i. e., practically an inte-
gration. This answers the charge made by Newton that
somehow or other he got this series from him or James
Gregory. In the same way, he thought that he could ob-
tain other series, but later found that it was beyond his
power. We find in this manuscript of October, 1674, an
attempt to get something out of an analogous series, the
logarithmic series, showing that it is very probable that
he has been studying Mercator during the interval between
August, 1673, and October, 1674. And in the Historia
he definitely states that he came upon the Arithmetical
Tetragonism in 1674 ; so that I think that I have offered a
reasonable suggestion as to the course his studies took so
far. Also in the meanwhile he has been doing much work



CONCLUSIONS. 233

on series, and has invented his Harmonic Triangle. I now
suppose that he completes his study of Pascal, is led by a
remark in it to study the Exercitationes Sex of Cavalieri
(he has already got some acquaintance with the Geometria
Indivisibilibus, read as a youth), he does not find much in
that to his liking, except the notion of moments. He breaks
off his reading and proceeds to work out an application of
Descartes’s algebra to this new idea of moments, the result
being the manuscripts of October and November, 1675;
here he is led on to the introduction of the symbols for
summation and differentiation, though as yet applied to
series, and sums of powers. The consideration of the
Quadratrix leads him to make a further study of Barrow;
and he is led to x/d, by a consideration of Barrow’s propo-
sitions on the inverse nature of the operations of integra-
tion and differentiation. This, combined with the analogy
to the inverse nature of summations and differences, leads
him to search for a reason why x/d should represent a
difference such as he has considered to be denoted by dx.
This at a later date necessitates the discussion of what the
result of operating with d on a product or a quotient will
be. Meanwhile the study of Barrow brings him to that
proposition which gives the polar differential triangle; in
it he perceives at once the method of “transmutation of
figures.” I now suppose that he appreciates Barrow more
fully and begins to apply Cartesian geometry to Barrow’s
theorems; in a manuscript dated November, 1675, he at-
tacked the problem of tangents, and in connection with it
considered the method of Descartes. In the next manu-
script that we have, dated June, 1676, he practically ob-
tained the differentiation of the sine and the inverse sine;
his figure, if he had given one, would have been the same
as that of Barrow for the differentiation of the tangent.
In July, 1676, he attacked the inverse-tangent problem,
still considering the work of Descartes. I think, however,
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that his work on Barrow has taken effect, for from now
on he includes the differential factor dx under the integral
sign. This is the last manuscript before he went to Lon-
don for the second time.

Thus, I take it that all Leibniz’s work is the result of
his own original methods on ideas that have been suggested
chiefly by two books, those of Barrow and Descartes; at
least, everything could have been suggested by these two
books alone, except the notion of “moment,” which came
from Cavalieri. Thus it was unnecessary for him to have
known anything about the work of Newton before he went
to London for the second time. What he saw there may
have had the effect of corroborating his own work; it could
have had little other effect. The final polishing of his
method T put down to a study of the Differential Triangle
method of Barrow, which Leibniz perceived to be powerful,
but found distasteful on account of the geometrical nature
of the work.
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Areas, by centrobaryc method, 67; by moments about parallel lines, 68.

Algorithm of Leibniz, fully explained (July, 1677), 132-134; revision of the
preceding, 143-144,

Archimedes, mensuration of surface of sphere in connection with discovery of
Characteristic Triangle, 15, 38; not to be found in Pascal, 207.

Arithmetical machine, 13.

Arithmetical Tetragonism, or Quadrature, 45, 163, 176, 189; polar diagrams
used to obtain, 42; date of discovery by Leibniz, 42, 61.

Arithmetical Triangle of Pascal, 49.

Barrow, indebtedness of Leibniz to, suggested, 7, 11, 71, 100, 125, 137, 139,
140, 180, 207, 208.

Barrow’s Lectiones, anticipation of theorems admitted by Leibniz, 20; Char-
acteristic Triangle probably suggested by, 15, 16; date of purchase by
Leibniz, 13, 15; differentiation of tangent and inverse tangent, 177;
methods in some respects a hindrance to Leibniz, 25; suggestion as to
the way in which Leibniz studied, 24, 218, 231; theorem of Gregory
quoted by Barrow, 25, 140.

Beaune’s problem, Leibniz’s unsuccessful attempt to solve, 120.

Bernoulli’s theorem, 34.

Books used by Leibniz for study, 11, 35, 37, 38, 220; suggested order in which
they were studied, 231.

Brook Taylor, finite difference theorem, 34.

Cavalieri, Exercitationes, précis of fifth (centers of gravity), 209; alluded to
by Leibniz, 215; Geometria Indivisibilibus, 12, 17 ; that his methods gave
rise to the higher analysis denied by Gerhardt, 196.

Characteristic, term used by Wallis, 31.

Characteristic Triangle, geometrical figures obtained by its use, 39, 40, 41, 43;
Gerhardt ascribes discovery to use of polar diagrams, 164; Leibniz con-
nects it with moment theorem discovered while studying Pascal, 15,
215; variations in figures used by Leibniz, 15, 62, 217, 221.

Combinatory Numbers, 32; anticipation of theorems by Mouton, 37; see also
Figurate Numbers.

Commercium Epistolicum, 4, 5; alluded to by Leibniz, 23, 57.

Continuity, Principle of, 147.

Curve, considered as polygon by Leibniz (Aug., 1673), 59.
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Date, of manuscript, alteration of, suggested explanation, 90, 93; of purchase
of Barrow’s Lectiones, 13, 15; of first and second visits to London, 159;
of discoveries, see under special headings.

Descartes, Leibniz finds his geometry intricate, 12, 37; second reading, 19, 37.

Dettonville, see Pascal.

Differences, expressed by 0 by Newton (?), 26; of differences of cubes
(Wallis), 31; of higher orders (Leibniz), 32; summation of, see Inter-
polation.

Differential coefficient, inability of Leibniz to obtain for a product up to July,

" 1676, 91, 97, 183, 197; of powers and square roots given, some incor-
rectly, after first visit to London, 124; of product, obtained geometri-
cally, but not recognized as such by Leibniz, 83; of products, powers,
quotients, and roots, correctly, after return to Germany, in 1677, 130
of sine and inverse sine, equivalent incidentally given, by Leibniz, 117;
of trigonometrical functions, geometrically, by Barrow, 177; proof that
d(xy) is not equal to dx.dy, and similarly for a quotient, 102, 103;
second and higher orders, 156ff.

Differential Calculus, date of perfection of technique of, 49; derived from
finite numbers according to Leibniz, 49.

Differentiation, recognized as the inverse of summation, 82; recognized as the
inverse of integration, 95-100; sign of differentiation, d, introduced as
a length (?), 82, 180, 213; still used as a denominator in Nov., 1675, 96;
use as an operator discussed, 102; use of x 4+ dx and y 4 dy in obtain-
ing formulas (Nov., 1676), 125,

Direct method of tangents, 111, 112,

Evolute, different meanings of the term, 43.
Extraction of roots, Newton’s methods of obtaining series by, 45, 48.

Figurate Numbers, De Arte Combinatoria of Leibniz, 29; work by Wallis
on, 31.

Gregory, James, theorem quoted by Barrow, 25, 140; same theorem quoted by
Leibniz without a diagram, 140.
Gregory’s series, see Arithmetical Tetragonism.

Harmonic Triangle of Leibniz, 50.

Hudde’s methods and results, 123.

Huygens, suggests study of Descartes, 37; presents copy of his Horologium
to Leibniz, 13, 36, 163.

Indivisibles, list of mathematicians employing, 24, 41.

Integration, infinitesimal factor dx still considered as unity in Nov., 1675, 92;
inserted in July, 1676, 119; sign of, introduced as a convenience (Oct.,
1675), 80; separation of invariables unperceived (Nov., 1675), 106.

Integration by Parts, geometrical equivalent to, obtained by Leibniz through
moments, 53, 65, 210; generalization algebraically, 70.

Interpolation, formulas of Leibniz and Newton, 33-34; queried anticipation
by Brook Taylor and Bernoulli, 34.

Inverse method of tangents, examples of, 104-107, 118-122; reducible to direct
method, 113; reducible to quadratures, 60.
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Limiting values, see § 17, pp. 145ff.

Logarithm, as an integral, 56, 95.

Logarithmic series, discussed by Leibniz, 61.

Logic, connection with mathematics, 29.

London, dates of first and second visits to, 159; what information Leibniz
obtained on his first visit, 160, 185; what he obtained on his second
visit, 168-169, 192-194, '

Moment (or Momentum), as used by Leibniz, 31, 41, 62; as used by Newton,
17; different significations, 17, 31, 195; first used, 17, 195; used by
Barrow and (?) Huygens, 18.

Moment theorem of Leibniz, attributed to reading Pascal, 15, 38, 221; circum-
stantial detail of Archimedes’s mensuration of the surface of a sphere,
38; employment of, 55; not mentioned in manuscript of Oct., 1674, in
connection with a true Pascal diagram, 62.

Moments, method of, or Centrobaryc Method, §§ 4-7.

Newton, indebtedness of Leibniz to (?), 9.
Nieuwentijt, reply by Leibniz to criticism of, 145.
Notations, used by Leibniz, for geometrical diagrams, 39; in algebra, 44, 56, 63.

Pascal, indebtedness of Leibniz to, suggested, 62, 89, 223; Leibniz’s algorithm
erroneously attributed to influence of, 196; occasion of discovery of
Characteristic Triangle, 15, 215; problems on cycloid, 201; see also Ger-
hardt’s essay, Chap. V1.

Polar diagrams, discussed by Leibniz, 109 ; previously used by Barrow, 42.

Quadratrix, not a special curve with Leibniz, 72, 219.

St. Vincent, Leibniz’s work on area of circle probably the outcome of study
of, 14, 38.

Series for arc, tangent and secant claimed by Leibniz, 47.

Slusius (de Sluse, or Sluze), method of, 19, 76, 129,

Sines and ordinates, as used by Pascal, distinction between, 203.

Substitutions, method of, first employed (Nov., 1676), 126.

Subtangent, curve with constant, not found by Leibniz, 122; Leibniz uses, to
find tangent (Aug., 1673), 59.

Tables of equations, Leibniz states he is compiling, 118; method of obtaining,
65; Newton’s Catalogus, 64; suggested use, 60, 62.

Transmutation of figures, 172, 188ff; Barrow fails to develop the method, 220;
Leibniz’s indebtedness to Barrow, 173, 175.

Unreliability of Leibniz, on points of unimportant detail, 229.
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