ISBN 0-521-39791-X

o 178052139701

i dge Mathematical !;:bray




X PREFACE

play some small réle in promoting future progress, the author will be

well satisfied.
The text has arisen from numerous lectures delivered in Cambridge,

America and elsewhere, and it has also formed the substance of an

Adams Prize essay.

I am grateful to Dr D. W. Masser for his kind assistance in check-
ing the proofs, and also to the Cambridge University Press for the
care they have taken with the printing.

Cambridge, 1974 A.B.

1
THE ORIGINS

1. Liouville’s theorem

The theory of transcendental numbers was originated by Liouville in

his famous memoirt of 1844 in which he obtained, for the first time,

a clags, rés-dlendue, as it was described in the title of the paper, of

numbers that satisfy no algebraic equation with integer coefficients.
- Some isolated problems pertaining to the subject, however, had been
formulated long before this date, and the closely related study of
irrational numbers had constituted a major focus of attention for’
at least a century preceding. Indeed, by 1744, Fuler had already
established the irrationality of e, and, by 1761, Lambert had con-
firmed the irrationality of 7. Moreover, the early studies of continued
fractions had revealed several basic features concerning the approxi-
mation of irrational numbers by rationals. It was known, for instance,
that for any irrational o there exists an infinite sequence of rationals
p/g {g > 0} such thatt |« — p/g| < 1/¢? and it was known. also that the
continued fraction of a quadratic irrational is ultimately periodic,
whence there exists ¢ = c(x) > 0 such that |x—p/g| > c/g? for all
rationals p/g (g > 0). Liouville observed that a result of the latter kind
holds more generally, and that there exists in fact a limit to the
aceuracy with which any algebraic number, not itself rational, can be
approximated by rationals. It was this observation that provided the
first practical criterion whereby transcendental numbers could be
constructed.

Theorem 1.1. For any algebraic number o with degree n > 1, there
exists ¢ = o) > 0 such that |a— plq| > c/g* for all rationals plg (¢ > 0).

The theorem follows almost at once from the definition of an
algebraic number. A real or complex number is said to be algebraic if
t is a zero of a polynomial with integer coefficients; every algebraic

-1 C.R.18 (1844}, 883-5, 810-11; J. Math. pures appl. 16 (1851), 133—42. For abbrovia-
©. tions ses page 130.

This is in fact easily verified; for any integer @ > 1, two of the @+ 1 numbers 1,
{go} (0 < ¢ < @), where {ga} denotes the fractional part of ge, lie in one of the Q
.subintervals of length 1/@ into which [0, 1] can be divided, and their differonce has
the form ge—p.

(1]
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number & is the zerc of some such irreducible? polynomial, say P,
unique up to & constant multiple, and the degree of « is defined as the
degree of P. It suffices to prove the theorem when « is real; in this case,
for any rational pfg (¢ > 0), we have by the mean value theorem:

—Pplg) = P(a)— P(plq) = (x—p[g) P'(§)

forsome £ between p/g and a. Clearly one can assume that (e — p/g| < 1,
for the result would otherwise be valid trivially; then |£| < 14 || and
thus [P'(£)| < 1/c for some ¢ = c(x) > 0; hence

le—plg} > c|P(p/g)].

But, since P is irreducible, we have P(p/q) = 0, and the integer
1g™ P(p/q)| is therefore at least 1; the theorem follows, Note that one
can easily give an explicit value for ¢; in fact one can take

¢ = n3(1+|a)mt

where H denotes the height of &, that is, the maximum of the absolute

values of the coeflicients of P.
A real or complex number that is not algebraic is said to be tran-
seendental. In view of Theorem 1.1, an obvious instance of such a

o0
number is given by £ = 3, 10~ For if we write
n=1

F
p; = 1010 T 107,
1

=

=100 (j=13,.),
then p,, g; are relatively prime rational integers and we have

[E—psq| = X 10!
=71

< WO+ 10714102+ ...) = R g7F 1 < g7l

Many other transcendental numbers can be specified on the basis of
Liouville’s theorem; indeed any non-terminating decimal in which
there oecur anfficiently long blocks of zeros, or any continued fraction
in which the partial quotients increase sufficiently rapidly, provides
an example. Numbers of this kind, that is real £ which possess a
sequence of distinot rational approximations p,/q, (» = 1, 2,...) such
that |£—p,/q,| < 1/q¢», where limsupw, = oo, have been termed
Liouville numbers; and, of course, these are transcendental, But other,

t That is, does not factorize over the integers or, equivalently, by Gauss’ lemma,
over the rationals,
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less obvious, applications of Liouville’s idea to the construction of
transcendental numbers have been described; in particular, Maillet*
used an extension of Theorem 1.1 concerning approximations by
quadratic irrationals to establish the transcendence of a remarkable
class of quasi-periodic continued fractions.*

In 1874, Cantor introduced the concept of countability and this

‘leads at onece to the observation that ‘almost all’ numbers are. tran-

scendental. Cantor’s work may be regarded as the forerunner of some
important metrical theory about which we shall speak in Chapter 8.

2, Transcendence of e

In 1873, there appeared Hermite's epoch-making memoir entitled
Sur ln fonction exponentielle! in which he established the transcendence
of ¢, the natural base for logarithms. The irrationality of e had been
demonstrated, as remarked earlier, by Euler in 1744, and Liouville
had shown in 1840, directly from the defining series, that in fact neither
enor ¢f could be rational or a quadratic irrational ; but Hermite’s work
began a new era. In particular, within a decade, Lindemann suceceeded
in generalizing Hermite’s methods and, in a classic paper,' he proved
that 7 is transcendental and solved thereby the ancient Greek problem
concerning the quadrature of the circle. The Greeks had sought to
construct, with ruler and compasses only, & square with area equal to

- that of a given circle. This plainly amounts to constructing two points

in the plane at a distance \/m apart, assuming that a unit length is
prescribed. But, since all points capable of construction are defined
by the intersection of lines and circles, it follows easily that their
co-ordinates in a suitable frame of reference are given by algebraic
pumbers. Thus the transcendence of 7 implies that the quadrature of
the cirele is impossible,

The work of Hermito and Lindemann was simplified by WeierstrassT
in 1885, and further simplified by Hilbert, 't Hurwitz*} and Gordan® in
1893. We proceed now to demonstrate the transcendence of e and  in
a style suggested by these later writers, :

1 Cf. Mathematika, 9 (1962), 1-8.
| M.A4. 20 (1882), 213-26.

+1 Ges, Abh. I, 1-4.
§§ M.A. 43 (1808), 222-5.

i See Bibliography.

§ O.R. 77; = Oecuwres 111, 150-81.

q Werke 11, 341-62.

13 Qottingen Nachrichten (1893), 163-5.
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Theorem 1.2. e s transcendental.

Preliminary to the proof, we observe that if f(x) is any real poly-
nomial with degree m, say, and if '

1= ety du,

theline joining 0 and ¢, then, by repeated integration by parts, we have?
m m
It} = et 3 f9(0)~ 3 fue). (1)
i=0 F=0

Further, if f(x) denotes the polynomial obtained from f by replacing
each coefficient with its absolute value, then

£ =
(1) < [ lepal du < o7, (@)
Suppose now that e is algebraie, so that
fotgiet...+ge” =0 (3)

for some integers n > 0, ¢, + 0, ¢y, ..., q,. We shall compare estimates

for

I = ¢ l0)+al(1)+... +4,1(n),
where I(t} is defined as above with

flx) =P e~ 1Y ... (x—n)",
o denoting a large prime. From (1} and (3) we have
m n
S ==3 F q.fk),
. F=0 k=0

where m = (n4-1)}p~— 1. Now clearly fO(k) = 0 if j < p, &k > 0 and if
3 < p—1, k=0, and thus for all §, £ other than j = p—1, k = 0, fO(k)
is an integer divisible by p!; further we have

FE0(0) = (p— )1 (— 1) (a1},
whence, if p > =, f%=2(0) is an integer divisible by (p — 1)! but not by
pl. It follows that, if also p > |g,|, then J is a non-zero integer divisible
by (p—1)tand thus | J| > (p— 1)!. But the trivial estimate f(k) < (2n)m
together with (2) gives
| M < g ef (1) + ...+ |g,| nerfin) < op
for some ¢ independent of p. The estimates are inconsistent if p is
?ufﬁciently large and the contradiction proves the theorem.

t fx) denotes the jth derivative of f.

where ¢ is an arbitrary complex number and the integral is taken over -
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Theorem 1.3. 7 is lranscendental.

Suppose the contrary, that = is algebraic; then also @ =ir is
algebraic. Let 6 have degree d, let &, (= 8),0,,...,8; denote the con-
jugates of # and let ! signify the leading coefficient in the minimal
polynomial® defining #. From Euler’s equation ¢ = — 1, we obtain

(14 e%) (L+ef)...(1+efd) = 0.
The product on the left can be written as a sum of 2¢ terms e®, where
O =605+ ... 6504,
and ¢; = 0 or 1; we suppose that precisely » of the numbers
€6, +... +e;0,;
are non-zero, and we denote these by o, ..., 2,,. We have then
g+eat... et =0, (4)

where g is the positive integer 2% —n.
We ghall compare estimates for

J = Ten)+... +1{exy,),

where I(t) is defined as in the proof of Theorem 1.2 with

flz) = PPz —all)p es (& —a,)?,

p again denoting a large prime. From (1) and (4) we have

J=—g 3 f0)= 5 3 fe),
=0 J=0k=1

. where m = (n+1)p—1. Now the sum over k is a symmetric poly-
" nomial in la, ..., ke, with integer coefficients, and it follows from two
applications of the fundamental theorem on symmetric functions
. together with the observation that each elementary symmetric
funetion in lx,, ..., fa, is also an elementary symmetric function in the
. 24 numbers I8, that it represents a rational integer. Further, since
© f9ap) =0 when j < p, the latter is plainly divisible by pl.
© (learly also fU(0) is a rational integer divisible by p! when

IR Land ) o (e 1) (D (3 ety

1 That is, the irreducible polynomial indicated earlier with relatively prime integer

coofficients; the coefficient of ## is called the leading coefficient, and it is assumed
. positive. The conjugates ere the zeros of the polynomial,
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. isarational integer divisible by {p ~
large. Hence, if p > ¢, we have [J| > (p—

7] < Joa] @ a]) + o+ o] ool ,]) < o7

for some ¢ independent of p. The estimates are meons1stent for p f

sufficiently large, and the contradiction proves the theorem.

3. Lindemann’s theorem

The two preceding theorems, that is the transcendence of ¢ and , are
special cases of a much more general result which Lindemann sketched |
in his original memoir of 1882, and which was later rigorously demon- |

strated by Weierstrass.

Theorem 1.4. For any distinct algebraic numbers ay, ...
non-zero algebraic numbers fy, ..., B, we have

frefat .+ e F 0.

Tt follows at once from Theorem 1.4 that e, ...
independent for all algebraic «;, ...,

theorem. As further immediate corollaries of Theorem 1.4, one sees

that cosa, sine and tano are transcendental for all algebraic c + 0,

and moreover log « is transcendental for algebraie & not 0 or L.
Suppose now that the theorem is false, so that

ettt B = 0. (5)

One can clearly assume, without loss of generality, that the §’s are L. .. . : o
rational integers, for this can be ensured by multiplying (5) by all the - 80 thatit s an algebraio integer divisible by (p —1)! but not by p lifpis

£, on the left o run inde- - sufficiently large. It follows that J; is a non-zero algebraic integer
pendently through their respective comjugates and then further i divisible by (p—1)!. Further, by the initial assumptions, we have

multiplying by a common denominator. Furthermore, one can -
< n, = n, such that -

expressions obtained on allowing £, ...,

agsume that there exist integers 0 = ny < n, < ...
is a complete set of conjugates for each £, and

= ﬁﬂtﬂ.‘

Cppg1s - s Olgy
Bgin = -

For certainly o, ...
coefficients and degree N, say, and if,, 4, ...,

zeros, we have (B, e + ... + fyesiz) = 0,

where the product is over all permutations %,, ..., ky of 1, ...,

1)! but not by p!if p is sufficiently
1)1, But from (2) we obtain |

s ey, and any

, e?n are algebraically
&, linearly independent over the :
rationals; this form of the result is generally known as Lindemann’s |

N and :: 1 That is, the quotient is an algebraic integer.
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Bus1 = ... = fxy = 0. The left-hand side can be expressed as an aggre-
gate of terms exp (A, &, + ... + hyay) with integer coefficients, where
by, ..., hy are integers with sum N!, and clearly hjay +...+hyag,
taken over all permutations %,, ..., ky of 1,..., ¥ is a complete set of
conjugates; the condition concerning the equality of the §’s follows
by symmetry. Note also that, after collecting terms with the same
exponents, one at least of the new coefficients # will be non-zero; this

is readily confirmed by considering the coefficient of the term with

exponent that is highest according to the ordering of the complex
numbers z = x iy given by z; < %, if 2, < x, 0r & = xy and gy < ys.

Letnow ! be any positive integer such that lx,, ..., la, and Iy, ..., 18,
are algebraic integers,™ and let

filw) = PP{{x—ay)... (w—a,)Pfw—a;) (1 <i<n),
where p denotes a large prime. We shall compare estimates for
|y +on |, where
Jp = Buli{en) + -+ B di(ey)
and I{t) is defined as in the proof of Theorem 1.2, with f = f,. From
(1) and (5) we have m

(1 <ign),

where m = np — 1. Further, f#(«;) is an algebraic integer divisible?

. by p!lunless j = p—1, k = £; and in the latter case we have

[PV =#(p—-1)! 1] (“i o)?,

ki

m r—1
= HJ'EJ s§oﬂ"‘+l{f e (npa) + - +f1§ﬂ(a5n,“)},

and here each sum over f can be expressed as a polynomial in «; with
. rational coefficients independent of 4; for clearly, since ;,

2 @ i

,a, aro zeros of some polynomial with integer | complete set of conjugates, the coefficients of f° () can be expressed in
2 ) . = = this form. Thus J; ..

¢ty denote the remaining &

1 An slgebraic number is said to be an algebraic integer if the leading coefficient in

vy &y is A
. J,, is rational, and so in fact a rational integer

its minimal defining polynomial is 1; if « is an algebraio number and [ is the leading
cosfficient in its minimal polynomial, then Ix is an algebraic integer.
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divisible by ((p—1)!)». Hence we have |J;.
gives
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[} < zéll%ﬂﬂ et f(lag|) < e,

for some ¢ independent of p, and the inequalities are inconsistent if p is

sufficiently large. The contradiction proves the theorem.

The above proofs are simplified versions of the original arguments of |
Hermite and Lindemann and their motivation may seem obscure; |
indeed there is no explanation @ priori for the introduction of the :

period is herewith concluded.

widy] 2 (p—1)1. But (2)?

2
LINEAR FORMS IN LOGARITHMS

!

1. Introduction

In 1900, at the International Congress of Mathematicians held in

functions I and f, A deeper insight can best be obtained by studying iParis, Hilbert raised, as the se‘venth of hi.s famous list of 23 problems,
the basic memoir of Hermite where, in modified form, the functions the question whether an irrational logarithin of an algebraic number

first occurred, but it may be said that they relate to generalizations, to an algebraic base is transcendental. The question is capable of
concerning simultaneous approximation, of the convergents in the ;V3TI0US alternative formulations; thus one can ask whether an irra-

continued fraction expansion of ¢*. Further light on the topic will be tional quotient of natural logarithms of algebraic numbers is tran-

shed by Chapters 10 and 11, Lindemann’s theorem formed the summit :scendental, or whether o/ is transcendental for any algebraic number

of the accomplishments of the last century, and our survey of the /% + 0,1 and any algebraic irrational £. A special case relating to
logarithms of rational numbers can be traced to the writings of Buler
i more than a century before, but no apparent progress had been made
towards its solution. Indeed, Hilbert expressed the opinion that the
resolution of the problem lay farther in the future than a proof of the

tRiemann hypothesis or Fermat’s last theorem.

The first significant advance was made by Gelfond? in 1929. Employ-

iing interpolation techniques of the kind that he had utilized previously
sinresearches onintegral integer-valued funections,? (elfond showed that
the Jogarithm of an algebraic number to an algebraic base cannot be an
{imaginary quadratic irrational, that is, of is transcendental for any
.éiﬁa]gebra.ic number « == 0, 1 and any imaginary quadratic irrational &,
iin particular, this implies that e = (— 1)~ i{s transcendental. The
result was extended to real quadratic irrationals £ by Kuzmind in
71930. But it was clear that direct appeal o an interpolation series for
i{:é'ﬂ*’, on which the Gelfond-Kuzmin work was based, was not appro-
{priate for more general 4, and further progress awaited a new idea. The
isearch for the latter was concluded successfully by Gelfond' and
'Schneider” independently in 1934. The arguments they discovered

ere applicable for any irrational # and, though differing in detail,
oth depended on the construction of an auxiliary function that
anished at certain selected points. A similar technique had been used
few years earlier by Siegel in the course of investigations on the
O.R, 189 (1929), 1224-8, '

LAN. 3 (1930}, 683-07.
J.M, 172 (1934), 656-9.

t Téhoku Math. J. 30 (1929), 280-5.
| D.AN. 2 (1934), 1-6; LAN. 7 (1934), 623-4.
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