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The divergence of ζ(1)
The identity ζ(2) = π2/6

The identity ζ(−1) = −1/12

Riemann’s zeta function

If s > 1 is a real number, then the series

ζ(s) =
∑
n≥1

1

ns

converges.

Proof: Compare the partial sum to an integral,

N∑
n=1

1

ns
≤ 1 +

∫ N

1

dx

x s
= 1 +

1

s − 1

(
1− 1

Ns−1

)
≤ 1 +

1

s − 1
.
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The resulting function ζ(s) is called Riemann’s zeta function.

Was studied in depth by Euler and others before Riemann.

ζ(s) is named after Riemann for two reasons:

1 He was the first to consider allowing the s in ζ(s) to be a
complex number 6= 1.

2 His deep 1859 paper “Ueber die Anzahl der Primzahlen unter
einer gegebenen Grösse” (“On the number of primes less than
a given quantity”) made remarkable connections between ζ(s)
and prime numbers.
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In this talk we will discuss certain special values of ζ(s) for integer
values of s.

In particular, we will discuss what happens at s = 1, 2 and −1.
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Overview

1 The divergence of ζ(1)

2 The identity ζ(2) = π2/6

3 The identity ζ(−1) = −1/12
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What happens as s → 1?

The value ζ(s) diverges to ∞ as s approaches 1.

To see this, use an integral to bound the partial sums from below
for s > 1:

N∑
n=1

1

ns
≥
∫ N+1

1

dx

x s
=

1

s − 1

(
1− 1

(N + 1)s−1

)
.

It follows that ζ(s) ≥ (s − 1)−1 for s > 1.
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In summary, so far we’ve seen that for s > 1,

1

s − 1
≤ ζ(s) ≤ 1

s − 1
+ 1.

Since the lower bound diverges as s → 1, so does ζ(s).

This is related to the fact that the Harmonic series

1 +
1

2
+

1

3
+

1

4
+ · · ·

diverges.
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Cute proof that the Harmonic series diverges

We consider the partial sum involving 2k terms:

2k∑
n=1

1

n
= 1 +

20 terms︷︸︸︷
1

2
+

21 terms︷ ︸︸ ︷
1

3
+

1

4
+ · · ·+

2k−1 terms︷ ︸︸ ︷
1

2k−1 + 1
+

1

2k−1 + 2
+ · · ·+ 1

2k

≥ 1 +

20 terms︷︸︸︷
1

2
+

21 terms︷ ︸︸ ︷
1

4
+

1

4
+ · · ·+

2k−1 terms︷ ︸︸ ︷
1

2k
+

1

2k
+ · · ·+ 1

2k

= 1 +
1

2
+

2

4
+ · · ·+ 2k−1

2k

= 1 +
k

2
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The identity ζ(2) = π2/6

If we apply the bounds

1

s − 1
≤ ζ(s) ≤ 1

s − 1
+ 1

from the previous part to s = 2 we deduce that

1 ≤ ζ(2) ≤ 2.

But what number in this interval is

ζ(2) = 1 +
1

4
+

1

9
+

1

16
+

1

25
+

1

36
+ · · ·?!
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It turns out that

ζ(2) =
π2

6
.

In fact, more generally if k ≥ 1 is any positive integer, then

ζ(2k) = (−1)k+1 B2k(2π)2k

2(2k)!
.

Here Bn is a rational number, the nth Bernoulli number, defined to
be the coefficient of X n/n! in the series

X

eX − 1
=
∞∑
n=0

Bn
X n

n!
.
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Thus, each value ζ(2k) is a rational multiple of π2k .

If that isn’t surprising to you, be aware of the following: the odd
values ζ(2k + 1) are not expected to be related to π in any
significant algebraic way.

Why the even zeta values ζ(2k) are algebraically related to π and
the odd values ζ(2k + 1) are (probably) not is one unsolved
problem in mathematics.

Cameron Franc Special values of Riemann’s zeta function



The divergence of ζ(1)
The identity ζ(2) = π2/6

The identity ζ(−1) = −1/12

We’ll now offer seven proofs that ζ(2) = π2/6, one for every day of
the week.
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First proof: An elementary trigonometric argument

First we note that for θ = π/(2N + 1) one has

cot2(θ) + cot2(2θ) + · · ·+ cot2(Nθ) =
N(2N − 1)

3
.

For x in (0, π/2) the inequality sin x < x < tan x implies

cot2 x <
1

x2
< cot2 x + 1.

Apply this to each of x = θ, 2θ, 3θ, etc, and sum to deduce

N(2N − 1)

3
<

1

θ2

(
1 +

1

22
+

1

32
+ · · ·+ 1

N2

)
<

N(2N − 1))

3
+ N.
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Multiply by θ2 = π2/(2N + 1)2 to deduce

π2

3

N(2N − 1)

(2N + 1)2
<

N∑
n=1

1

n2
<
π2

3

N(2N − 1)

(2N + 1)2
+ π2 N

(2N + 1)2

Since the upper and lower bounds both converge to the same limit
as N grows, and the middle one converges to ζ(2), we deduce that

ζ(2) =
π2

3
· lim
N→∞

N(2N − 1)

(2N + 1)2
=
π2

3
· lim
N→∞

1− 1
2N2

2(1 + 1
2N )2

=
π2

6
.
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Second proof: Fourier series

The Fourier series expansion of x2 is

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n
cos(nx)

n2
.

Since cos(nπ) = (−1)n for integers n, evaluating at x = π gives

π2 =
π2

3
+ 4

∞∑
k=1

1

n2
=
π2

3
+ 4ζ(2).

Hence ζ(2) = π2/6.
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Third proof: A double integral

We evaluate a certain double integral two ways. First,

I =

∫ 1

0

∫ 1

0

dxdy

1− xy

=
∑
n≥0

∫ 1

0

∫ 1

0
(xy)ndxdy

=
∑
n≥1

∫ 1

0

yn−1

n
dy

=
∑
n≥1

1

n2
= ζ(2).
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On the other hand, the substitutions x = (
√

2/2)(u − v) and
y = (

√
2/2)(u + v) allow one to write

I = 4

∫ √2/2

0

∫ u

0

dudv

2− u2 + v 2
+ 4

∫ √2

√
2/2

∫ √2−u

0

dudv

2− u2 + v 2
.

Persistance and some trig substitutions allow one to evaluate both
of the above integrals and show that

ζ(2) = I =
π2

18︸︷︷︸
first integral

+
π2

9︸︷︷︸
second integral

=
π2

6
.
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Fourth proof: the residue theorem

The following can be proved using the residue theorem from
complex analysis.

Theorem (Summation of rational functions)

Let P and Q be polynomials with deg Q ≥ deg P + 2 and let
f (z) = P(z)/Q(z). Let S ⊆ C be the finite set of poles of f . Then

lim
N→∞

N∑
k=−N
k 6∈S

f (k) = −
∑
p∈S

residuez=p(πf (z) cot(πz)).
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Let’s take f (z) = 1/z2. In this case S = {0} and the theorem
gives a formula for the sum

∞∑
k=−∞
k 6=0

1

k2
= 2

∞∑
k=1

1

k2
= 2ζ(2).

Since the polar set S consists only of 0, the preceding summation
theorem shows us that this sum is nothing but

−residuez=0(π cot(πz)/z2).

That is, the theorem immediately gives us the formula

ζ(2) = −π
2
· residuez=0

(
cot(πz)

z2

)
.
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We have

cot(πz)

z2
=

1

z2

(a

z
+ b + cz + dz2 + · · ·

)
=

a

z3
+

b

z2
+

residue︷︸︸︷
c

z
+d+· · ·

and hence

residuez=0

(
cot(πz)

z2

)
=

1

2
· d2

dz2

(
z3 · cot(πz)

z2

) ∣∣∣∣∣
z=0

= −π
3
.

Putting everything together shows that

ζ(2) = −π
2
· residuez=0

(
cot(πz)

z2

)
=
(
−π

2

)
·
(
−π

3

)
=
π2

6
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Fifth proof: Weierstrass product

Let P(X ) be a polynomial of the form

P(X ) = (1 + r1X )(1 + r2X ) · · · (1 + rnX ).

Then the coefficient of X in P(X ) is equal to

r1 + r2 + · · ·+ rn.
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The sine function is like a polynomial: it has a Taylor series

sin(X ) = X − X 3

3!
+

X 5

5!
− X 7

7!
+ · · ·

and a Weierstrass product

sin(X ) = X
∞∏
n=1

(
1− X 2

(πn)2

)
.

If we cancel X and let Z = X 2 then we deduce that

1− Z

3!
+

Z 2

5!
− Z 3

7!
+ · · · =

∞∏
n=1

(
1 +

(
− 1

(πn)2

)
Z

)
.
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In analogy with polynomials, the identity

1− Z

3!
+

Z 2

5!
− Z 3

7!
+ · · · =

∞∏
n=1

(
1 +

(
− 1

(πn)2

)
Z

)
.

suggests that the coefficent of Z should be the sum of the
reciprocal roots on the right. That is:

− 1

3!
=
∑
n≥1

−1

(πn)2

and hence ζ(2) = π2

6 .

Cameron Franc Special values of Riemann’s zeta function



The divergence of ζ(1)
The identity ζ(2) = π2/6

The identity ζ(−1) = −1/12

Sixth proof: moduli of elliptic curves

Let
H = {z ∈ C | =(z) > 0}

and let SL2(Z) act on H via fractional linear transformation. Then

SL2(Z)\H

is the coarse moduli space of elliptic curves, and one can show that∫
SL2(Z)\H

dxdy

y 2
=

2ζ(2)

π
.

But this integral can be computed explicitely and is equal to π/3.
Hence ζ(2) = π2/6.
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Seventh proof: probabilistic (as in, this is probably a proof)

Euler used unique factorization to prove that

ζ(s) =
∏
p

(
1− 1

ps

)−1

.

This Euler product is taken over all primes p.

The probability that an integer is divisible by p is 1/p.

This is independent among numbers, so the probability that two
integers are simultaneously divisible by p is 1/p2.
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Recall: coprime integers share no common prime factors.

The probability P(coprime) that two random integers are coprime
is the product over all primes p of the probability that they do not
share the prime factor p.

Thus, the Euler product for ζ(s) shows that

P(coprime) =
∏
p

(
1− 1

p2

)
= ζ(2)−1.

So to prove ζ(2) = π2/6, you just need to choose enough random
pairs of integers and test whether they’re coprime!
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In what sense does 1 + 2 + 3 + 4 + · · · = −1/12?

Figure: Wikipedia talk page for the article Zeta function regularization,
February 25, 2013
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Of course it’s not literally true that the series

1 + 2 + 3 + 4 + 5 + · · ·

converges in the conventional sense of convergence.

There is a deeper truth hidden in the seemingly absurd claim that

1 + 2 + 3 + 4 + 5 + · · · = −1/12.
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Zeta as a function of a complex variable

As observed by Riemann, the sum defining the zeta function

ζ(s) =
∞∑
n=1

1

ns

makes sense for all complex s with <(s) > 1.

Proof: If s = x + iy with x > 1, note that

ζ(s) =
∞∑
n=1

1

e i log(n)ynx
.

Since
∣∣e i log(n)y

∣∣ = 1, this series converges absolutely if ζ(x) does.
Since x > 1, we win.
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Analyticity of ζ(s)

The resulting complex zeta function is analytic (a.k.a. complex
differentiable).

Proof: The partial sums are clearly analytic, being a finite sum of
exponentials. It’s not hard to prove that they converge uniformly
on regions <(s) ≥ 1 + ε for ε > 0. A standard result in complex
analysis then implies that ζ(s) is analytic in the region <(s) > 1.
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Analytic continuation

Analytic functions are very rigid – they satisfy the property of
analytic continuation. More precisely, one proves the following in a
first course on complex analysis:

Theorem

Let U ⊆ C be an open subset and let f be analytic on U. Let
V ⊃ U denote a larger open subset, and assume further that V is
connected. Then there exists at most one analytic function g on V
such that g |U = f .
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Another fundamental contribution of Riemann to the study of ζ(s)
is his proof that ζ(s) continues analytically to an analytic function
on C− {1}.

Since ζ(s) has a pole at s = 1, this is as good as it could be!

Note: outside the region <(s) > 1, the function ζ(s) is not defined
by the usual summation. This distinction is crucial!
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Functional equation

Still another fundamental contribution of Riemann to the study of
ζ(s) is his proof of the functional equation:

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s),

where Γ(s) denotes the gamma function defined via the integral

Γ(s) =

∫ ∞
0

tse−t
dt

t
.

Note that the functional equation relates ζ(−1) with ζ(2)!
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The value ζ(−1)

So, if we plug in s = −1 to

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)

we get

ζ(−1) = 2−1π−2 sin(−π/2)Γ(2)ζ(2)

=

(
−1

2π2

)
· 1! ·

(
π2

6

)
= − 1

12
.
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Zeta function regularization

Physicists will often use this sort of technique to assign finite
values to divergent series. Let

a1 + a2 + a3 + · · ·

denote a possibly divergent series.

To assign it a finite value, define an associated zeta function:

ζA(s) =
∞∑
n=1

1

asn
.

If this converges and continues analytically to s = −1, then one
can think of the value ζA(−1) as “acting like” the sum of the
series a1 + a2 + a3 + · · · .
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Stricly speaking, the sum

a1 + a2 + a3 + · · ·

would not necessarily converge to ζA(−1) in any rigorous sense.
Nevertheless, it turns out to be physically useful to assign such
“zeta-regularized” values to certain divergent series.
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The value ∞!

On this note, we’ll end by discussing how to assign a “value” to
∞!. Here is a highly suspicious derivation:

∞! = 1 · 2 · 3 · 4 · 5 · · ·

= exp

( ∞∑
n=1

log(n)

)
= exp

(
−ζ ′(0)

)
Since ζ(s) is analytic on C− {1}, the value ζ ′(0) is finite!

Cameron Franc Special values of Riemann’s zeta function



The divergence of ζ(1)
The identity ζ(2) = π2/6

The identity ζ(−1) = −1/12

One can use the functional equation for ζ(s) to deduce that

−ζ ′(0) =
1

2
log(2π).

Hence,

∞! = exp(−ζ ′(0)) = exp((1/2) log(2π)) =
√

2π

... right?
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Thanks for listening!
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