Special values of Riemann's zeta function

Cameron Franc

UC Santa Cruz

March 6, 2013

4 3 b

Riemann's zeta function

If s > 1 is a real number, then the series

$$\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$$

converges.

Proof: Compare the partial sum to an integral,

$$\sum_{n=1}^{N} \frac{1}{n^{s}} \leq 1 + \int_{1}^{N} \frac{dx}{x^{s}} = 1 + \frac{1}{s-1} \left(1 - \frac{1}{N^{s-1}} \right) \leq 1 + \frac{1}{s-1}.$$

4 E b

The resulting function $\zeta(s)$ is called *Riemann's zeta function*.

Was studied in depth by Euler and others before Riemann.

 $\zeta(s)$ is named after Riemann for two reasons:

- He was the first to consider allowing the s in ζ(s) to be a complex number ≠ 1.
- His deep 1859 paper "Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse" ("On the number of primes less than a given quantity") made remarkable connections between ζ(s) and prime numbers.

In this talk we will discuss certain special values of $\zeta(s)$ for integer values of *s*.

In particular, we will discuss what happens at s = 1, 2 and -1.

Overview

2 The identity
$$\zeta(2)=\pi^2/6$$

$$\bigcirc$$
 The identity $\zeta(-1)=-1/12$

What happens as $s \rightarrow 1$?

The value $\zeta(s)$ diverges to ∞ as *s* approaches 1.

To see this, use an integral to bound the partial sums from below for s > 1:

$$\sum_{n=1}^{N} \frac{1}{n^{s}} \ge \int_{1}^{N+1} \frac{dx}{x^{s}} = \frac{1}{s-1} \left(1 - \frac{1}{(N+1)^{s-1}} \right)$$

It follows that $\zeta(s) \ge (s-1)^{-1}$ for s > 1.

In summary, so far we've seen that for s > 1,

$$rac{1}{s-1} \leq \zeta(s) \leq rac{1}{s-1} + 1.$$

Since the lower bound diverges as $s \to 1$, so does $\zeta(s)$.

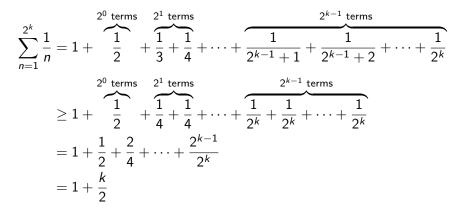
This is related to the fact that the Harmonic series

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

diverges.

Cute proof that the Harmonic series diverges

We consider the partial sum involving 2^k terms:



Overview

1 The divergence of $\zeta(1)$

2 The identity $\zeta(2) = \pi^2/6$

3 The identity $\zeta(-1) = -1/12$

同 ト イ ヨ ト イ ヨ ト

The identity $\zeta(2) = \pi^2/6$

If we apply the bounds

$$rac{1}{s-1} \leq \zeta(s) \leq rac{1}{s-1} + 1$$

from the previous part to s = 2 we deduce that

 $1 \leq \zeta(2) \leq 2.$

But what number in this interval is

$$\zeta(2) = 1 + rac{1}{4} + rac{1}{9} + rac{1}{16} + rac{1}{25} + rac{1}{36} + \cdots?!$$

It turns out that

$$\zeta(2)=\frac{\pi^2}{6}.$$

In fact, more generally if $k \ge 1$ is any positive integer, then

$$\zeta(2k) = (-1)^{k+1} \frac{B_{2k}(2\pi)^{2k}}{2(2k)!}$$

Here B_n is a rational number, the *n*th Bernoulli number, defined to be the coefficient of $X^n/n!$ in the series

$$\frac{X}{e^X - 1} = \sum_{n=0}^{\infty} B_n \frac{X^n}{n!}.$$

Thus, each value $\zeta(2k)$ is a rational multiple of π^{2k} .

If that isn't surprising to you, be aware of the following: the odd values $\zeta(2k+1)$ are not expected to be related to π in any significant algebraic way.

Why the even zeta values $\zeta(2k)$ are algebraically related to π and the odd values $\zeta(2k+1)$ are (probably) not is one unsolved problem in mathematics.

We'll now offer seven proofs that $\zeta(2) = \pi^2/6$, one for every day of the week.

First proof: An elementary trigonometric argument

First we note that for $\theta = \pi/(2N+1)$ one has

$$\cot^2(\theta) + \cot^2(2\theta) + \cdots + \cot^2(N\theta) = \frac{N(2N-1)}{3}$$

For x in $(0, \pi/2)$ the inequality sin $x < x < \tan x$ implies

$$\cot^2 x < \frac{1}{x^2} < \cot^2 x + 1.$$

Apply this to each of $x = \theta$, 2θ , 3θ , etc, and sum to deduce

$$\frac{N(2N-1)}{3} < \frac{1}{\theta^2} \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{N^2} \right) < \frac{N(2N-1)}{3} + N.$$

Multiply by
$$heta^2 = \pi^2/(2N+1)^2$$
 to deduce

$$\frac{\pi^2}{3} \frac{N(2N-1)}{(2N+1)^2} < \sum_{n=1}^{N} \frac{1}{n^2} < \frac{\pi^2}{3} \frac{N(2N-1)}{(2N+1)^2} + \pi^2 \frac{N}{(2N+1)^2}$$

Since the upper and lower bounds both converge to the same limit as N grows, and the middle one converges to $\zeta(2)$, we deduce that

$$\zeta(2) = \frac{\pi^2}{3} \cdot \lim_{N \to \infty} \frac{N(2N-1)}{(2N+1)^2} = \frac{\pi^2}{3} \cdot \lim_{N \to \infty} \frac{1 - \frac{1}{2N^2}}{2(1 + \frac{1}{2N})^2} = \frac{\pi^2}{6}.$$

Second proof: Fourier series

The Fourier series expansion of x^2 is

$$x^{2} = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} (-1)^{n} \frac{\cos(nx)}{n^{2}}$$

Since $\cos(n\pi) = (-1)^n$ for integers *n*, evaluating at $x = \pi$ gives

$$\pi^2 = \frac{\pi^2}{3} + 4\sum_{k=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{3} + 4\zeta(2).$$

Hence $\zeta(2) = \pi^2/6$.

Third proof: A double integral

We evaluate a certain double integral two ways. First,

$$I = \int_{0}^{1} \int_{0}^{1} \frac{dxdy}{1 - xy}$$

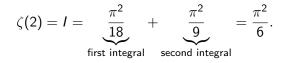
= $\sum_{n \ge 0} \int_{0}^{1} \int_{0}^{1} (xy)^{n} dxdy$
= $\sum_{n \ge 1} \int_{0}^{1} \frac{y^{n-1}}{n} dy$
= $\sum_{n \ge 1} \frac{1}{n^{2}} = \zeta(2).$

- ∢ ≣ ▶

On the other hand, the substitutions $x = (\sqrt{2}/2)(u - v)$ and $y = (\sqrt{2}/2)(u + v)$ allow one to write

$$I = 4 \int_0^{\sqrt{2}/2} \int_0^u \frac{dudv}{2 - u^2 + v^2} + 4 \int_{\sqrt{2}/2}^{\sqrt{2}} \int_0^{\sqrt{2} - u} \frac{dudv}{2 - u^2 + v^2}$$

Persistance and some trig substitutions allow one to evaluate both of the above integrals and show that



Fourth proof: the residue theorem

The following can be proved using the residue theorem from complex analysis.

Theorem (Summation of rational functions)

Let P and Q be polynomials with deg $Q \ge \deg P + 2$ and let f(z) = P(z)/Q(z). Let $S \subseteq \mathbf{C}$ be the finite set of poles of f. Then

$$\lim_{N \to \infty} \sum_{\substack{k = -N \\ k \notin S}}^{N} f(k) = -\sum_{p \in S} residue_{z=p}(\pi f(z) \cot(\pi z)).$$

Let's take $f(z) = 1/z^2$. In this case $S = \{0\}$ and the theorem gives a formula for the sum

$$\sum_{\substack{k=-\infty\\k\neq 0}}^{\infty} \frac{1}{k^2} = 2\sum_{k=1}^{\infty} \frac{1}{k^2} = 2\zeta(2).$$

Since the polar set S consists only of 0, the preceding summation theorem shows us that this sum is nothing but

$$-\operatorname{residue}_{z=0}(\pi \cot(\pi z)/z^2).$$

That is, the theorem immediately gives us the formula

$$\zeta(2) = -rac{\pi}{2} \cdot \operatorname{residue}_{z=0}\left(rac{\operatorname{cot}(\pi z)}{z^2}
ight).$$

We have

$$\frac{\cot(\pi z)}{z^2} = \frac{1}{z^2} \left(\frac{a}{z} + b + cz + dz^2 + \cdots \right) = \frac{a}{z^3} + \frac{b}{z^2} + \underbrace{c}_{z}^{\text{residue}} + d + \cdots$$

and hence

$$\operatorname{residue}_{z=0}\left(\frac{\cot(\pi z)}{z^2}\right) = \frac{1}{2} \cdot \frac{d^2}{dz^2} \left(z^3 \cdot \frac{\cot(\pi z)}{z^2}\right) \bigg|_{z=0} = -\frac{\pi}{3}$$

Putting everything together shows that

$$\zeta(2) = -\frac{\pi}{2} \cdot \operatorname{residue}_{z=0}\left(\frac{\cot(\pi z)}{z^2}\right) = \left(-\frac{\pi}{2}\right) \cdot \left(-\frac{\pi}{3}\right) = \frac{\pi^2}{6}$$

- ∢ ≣ ▶

Fifth proof: Weierstrass product

Let P(X) be a polynomial of the form

$$P(X) = (1 + r_1 X)(1 + r_2 X) \cdots (1 + r_n X).$$

Then the coefficient of X in P(X) is equal to

$$r_1 + r_2 + \cdots + r_n$$
.

4 3 b

The sine function is *like* a polynomial: it has a Taylor series

$$sin(X) = X - \frac{X^3}{3!} + \frac{X^5}{5!} - \frac{X^7}{7!} + \cdots$$

and a Weierstrass product

$$\sin(X) = X \prod_{n=1}^{\infty} \left(1 - \frac{X^2}{(\pi n)^2} \right).$$

If we cancel X and let $Z = X^2$ then we deduce that

$$1 - \frac{Z}{3!} + \frac{Z^2}{5!} - \frac{Z^3}{7!} + \dots = \prod_{n=1}^{\infty} \left(1 + \left(-\frac{1}{(\pi n)^2} \right) Z \right).$$

In analogy with polynomials, the identity

$$1 - \frac{Z}{3!} + \frac{Z^2}{5!} - \frac{Z^3}{7!} + \dots = \prod_{n=1}^{\infty} \left(1 + \left(-\frac{1}{(\pi n)^2} \right) Z \right).$$

suggests that the coefficient of Z should be the sum of the reciprocal roots on the right. That is:

$$-\frac{1}{3!} = \sum_{n \ge 1} \frac{-1}{(\pi n)^2}$$

and hence $\zeta(2) = \frac{\pi^2}{6}$.

Sixth proof: moduli of elliptic curves

Let

$$\mathcal{H} = \{z \in \mathbf{C} \mid \Im(z) > 0\}$$

and let $\mathsf{SL}_2(\boldsymbol{\mathsf{Z}})$ act on $\mathcal H$ via fractional linear transformation. Then

 $SL_2(\mathbf{Z}) \setminus \mathcal{H}$

is the coarse moduli space of elliptic curves, and one can show that

$$\int_{\mathrm{SL}_2(\mathbf{Z})\setminus\mathcal{H}}\frac{dxdy}{y^2}=\frac{2\zeta(2)}{\pi}.$$

But this integral can be computed explicitly and is equal to $\pi/3$. Hence $\zeta(2) = \pi^2/6$.

Seventh proof: probabilistic (as in, this is probably a proof)

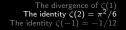
Euler used unique factorization to prove that

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s}\right)^{-1}$$

This Euler product is taken over all primes p.

The probability that an integer is divisible by p is 1/p.

This is independent among numbers, so the probability that two integers are simultaneously divisible by p is $1/p^2$.



Recall: *coprime* integers share no common prime factors.

The probability P(coprime) that two random integers are coprime is the product over all primes p of the probability that they do not share the prime factor p.

Thus, the Euler product for $\zeta(s)$ shows that

$$P(\operatorname{coprime}) = \prod_{p} \left(1 - \frac{1}{p^2}\right) = \zeta(2)^{-1}.$$

So to prove $\zeta(2) = \pi^2/6$, you just need to choose enough random pairs of integers and test whether they're coprime!

Overview

2 The identity $\zeta(2)=\pi^2/6$

3 The identity $\zeta(-1) = -1/12$

同 ト イ ヨ ト イ ヨ ト

In what sense does $1 + 2 + 3 + 4 + \cdots = -1/12$?

Talk:Zeta function regularization

From Wikipedia, the free encyclopedia

On the face of this this article appears to be rubbish. Can anyone make sense of it? Billion 15:53, 8 November 2005 (UTC)

I cleaned up the format and added some links, but it's not my field and I can't say anything about the content. It seems to closely follow Casimir_effect#Calculation, so maybe it could be merged or redirected there. Tom Harrison & (taik) 17:01, 8 November 2005 (UTC)

I improve some explanations and make clear the relation to Casimir effect. –Enyokoyama (talk) 12:53, 6 January 2013 (UTC)

Figure: *Wikipedia* talk page for the article *Zeta function regularization*, February 25, 2013

・ロト ・同ト ・ヨト ・ヨト

Of course it's not literally true that the series

 $1+2+3+4+5+\cdots$

converges in the conventional sense of convergence.

There is a deeper truth hidden in the seemingly absurd claim that

$$1 + 2 + 3 + 4 + 5 + \dots = -1/12.$$

Zeta as a function of a complex variable

As observed by Riemann, the sum defining the zeta function

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

makes sense for all complex s with $\Re(s) > 1$.

Proof. If s = x + iy with x > 1, note that

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{e^{i \log(n) y} n^{x}}.$$

Since $|e^{i \log(n)y}| = 1$, this series converges absolutely if $\zeta(x)$ does. Since x > 1, we win. Analyticity of $\zeta(s)$

The resulting complex zeta function is *analytic* (a.k.a. *complex differentiable*).

Proof: The partial sums are clearly analytic, being a finite sum of exponentials. It's not hard to prove that they converge uniformly on regions $\Re(s) \ge 1 + \varepsilon$ for $\varepsilon > 0$. A standard result in complex analysis then implies that $\zeta(s)$ is analytic in the region $\Re(s) > 1$.

Analytic continuation

Analytic functions are very rigid – they satisfy the property of *analytic continuation*. More precisely, one proves the following in a first course on complex analysis:

Theorem

Let $U \subseteq \mathbf{C}$ be an open subset and let f be analytic on U. Let $V \supset U$ denote a larger open subset, and assume further that V is connected. Then there exists at most one analytic function g on V such that $g|_U = f$.

Another fundamental contribution of Riemann to the study of $\zeta(s)$ is his proof that $\zeta(s)$ continues analytically to an analytic function on $\mathbf{C} - \{1\}$.

Since $\zeta(s)$ has a pole at s = 1, this is as good as it could be!

Note: outside the region $\Re(s) > 1$, the function $\zeta(s)$ is not defined by the usual summation. This distinction is crucial!

Functional equation

Still another fundamental contribution of Riemann to the study of $\zeta(s)$ is his proof of the functional equation:

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s),$$

where $\Gamma(s)$ denotes the gamma function defined via the integral

$$\Gamma(s) = \int_0^\infty t^s e^{-t} \frac{dt}{t}.$$

Note that the functional equation relates $\zeta(-1)$ with $\zeta(2)$!

The value $\zeta(-1)$

So, if we plug in s = -1 to

$$\zeta(s) = 2^s \pi^{s-1} \sin\left(\frac{\pi s}{2}\right) \Gamma(1-s) \zeta(1-s)$$

we get

$$\begin{aligned} \zeta(-1) &= 2^{-1} \pi^{-2} \sin(-\pi/2) \Gamma(2) \zeta(2) \\ &= \left(\frac{-1}{2\pi^2}\right) \cdot 1! \cdot \left(\frac{\pi^2}{6}\right) \\ &= -\frac{1}{12}. \end{aligned}$$

Zeta function regularization

Physicists will often use this sort of technique to assign finite values to divergent series. Let

$$a_1+a_2+a_3+\cdots$$

denote a possibly divergent series.

To assign it a finite value, define an associated zeta function:

$$\zeta_{\mathcal{A}}(s) = \sum_{n=1}^{\infty} \frac{1}{a_n^s}.$$

If this converges and continues analytically to s = -1, then one can think of the value $\zeta_A(-1)$ as "acting like" the sum of the series $a_1 + a_2 + a_3 + \cdots$.

Stricly speaking, the sum

 $a_1+a_2+a_3+\cdots$

would not necessarily *converge* to $\zeta_A(-1)$ in any rigorous sense. Nevertheless, it turns out to be physically useful to assign such "zeta-regularized" values to certain divergent series. 0

The value ∞ !

On this note, we'll end by discussing how to assign a "value" to $\infty!.$ Here is a highly suspicious derivation:

$$0! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdots$$
$$= \exp\left(\sum_{n=1}^{\infty} \log(n)\right)$$
$$= \exp\left(-\zeta'(0)\right)$$

Since $\zeta(s)$ is analytic on $\mathbf{C} - \{1\}$, the value $\zeta'(0)$ is finite!

One can use the functional equation for $\zeta(s)$ to deduce that

$$-\zeta'(0)=rac{1}{2}\log(2\pi).$$

Hence,

$$\infty! = \exp(-\zeta'(0)) = \exp((1/2)\log(2\pi)) = \sqrt{2\pi}$$

... right?

□ > < = > <

э

э

Thanks for listening!

æ

<ロト <部ト < 注ト < 注ト