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Riemann’'s zeta function

If s > 1 is a real number, then the series

1
:Z;
n>1

converges.

Proof: Compare the partial sum to an integral,

N N
1 dx 1 1 1
~ <1 X1y~ (1) <1
z_: s = / xS 1+s—l( N51>_ +s—1

Cameron Franc Special values of Riemann's zeta function



The resulting function ((s) is called Riemann’s zeta function.
Was studied in depth by Euler and others before Riemann.

¢(s) is named after Riemann for two reasons:
© He was the first to consider allowing the s in ((s) to be a
complex number # 1.
© His deep 1859 paper “Ueber die Anzahl der Primzahlen unter
einer gegebenen Grésse” (“On the number of primes less than
a given quantity") made remarkable connections between ((s)
and prime numbers.
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In this talk we will discuss certain special values of ((s) for integer
values of s.

In particular, we will discuss what happens at s =1, 2 and —1.
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The divergence of ((1)

Overview

@ The divergence of ((1)
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The divergence of ((1)

What happens as s — 17

The value ((s) diverges to oo as s approaches 1.

To see this, use an integral to bound the partial sums from below
for s > 1:
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The divergence of ((1)

In summary, so far we've seen that for s > 1,

1
< < ——+1.
s—l_C(S)_s—1+

Since the lower bound diverges as s — 1, so does ((s).
This is related to the fact that the Harmonic series
L S
2 3 4

diverges.
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The divergence of ((1)

Cute proof that the Harmonic series diverges

We consider the partial sum involving 2% terms:

20 terms 2! terms 2k=1 terms
2k = —~
Loy Do ]
nzln_ 2 3 4 k=141 ~ 2k=1 42 2k
20 terms 2! terms 2k=1 terms
A~ = —— A
S T N . IO
= 2 44 ok 2k 2k
1l 2y +2k_1
N 2 4 2k
k
=1 —
+2
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The identity ¢(2) = 72/6

Overview

© The identity ¢(2) = 72/6
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The identity ¢(2) = 72/6

The identity ¢(2) = 72/6

If we apply the bounds

<i(s) € — 1

s—1 s—1

from the previous part to s = 2 we deduce that
1<¢(2)<2

But what number in this interval is

1 1 1 1 1
2)=1 — =+
(2)=1+~ 2ot e T E T T
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The identity ¢(2) = 72/6

It turns out that

In fact, more generally if k > 1 is any positive integer, then

ki1 Bo(2m)

Here B, is a rational number, the nth Bernoulli number, defined to
be the coefficient of X”/n! in the series

X = X"
=3B, "
eX —1 ; " pl
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The identity ¢(2) = 72/6

Thus, each value ((2k) is a rational multiple of 72X

If that isn't surprising to you, be aware of the following: the odd
values ((2k + 1) are not expected to be related to 7 in any
significant algebraic way.

Why the even zeta values ((2k) are algebraically related to 7 and

the odd values ((2k + 1) are (probably) not is one unsolved
problem in mathematics.
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The identity ¢(2) =

We'll now offer seven proofs that ((2) = 72/6, one for every day of
the week.
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The identity ¢(2) = 72/6

First proof: An elementary trigonometric argument

First we note that for § = 7 /(2N + 1) one has

N(2N — 1)

cot?() + cot?(20) + - - - + cot?(N6) = 3

For x in (0,7/2) the inequality sin x < x < tanx implies
1
cot? x < = < cot?x + 1.
X

Apply this to each of x =6, 260, 36, etc, and sum to deduce

N(2N — 1) 1( 11 1> NEN 1)),

14 — + — il
3 <02 + +32+ +N2 3
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The identity ¢(2) = 72/6

Multiply by 6% = 72 /(2N + 1)? to deduce

72 N(2N — 1) Z"’:l @?N2N-1) , N

3 2N+ 1) 2 3 @eNt1e T Nt 12

Since the upper and lower bounds both converge to the same limit
as N grows, and the middle one converges to ((2), we deduce that

7 NQN-1) =2 1- ﬁ 72
- lim ———= = — lim —=— = —.
3 Nooo 2N+1)2 3 Noo2(l+55)2 6

((2) =
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The identity ¢(2) = 72/6

Second proof: Fourier series

The Fourier series expansion of x2

Since cos(nm) = (—1)" for integers n, evaluating at x = 7 gives

o0

R N TE)

k=1

Hence ((2) = 72/6.
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The identity ¢(2) = 72/6

Third proof: A double integral

We evaluate a certain double integral two ways. First,
. /1 /1 dxdy
o Jo 1—xy

= Z/Ol /Ol(xy)”dxdy

n>0
1. .,n-1
170 N
1
= Z == ¢(2).
n>1
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The identity ¢(2) = 72/6

On the other hand, the substitutions x = (v/2/2)(u — v) and
= (v/2/2)(u + v) allow one to write

[ 4/\7/2/ dudv / /2“ dudv
N 2—u2—i—v2 V22 2— w2+ v2
Persistance and some trig substitutions allow one to evaluate both
of the above integrals and show that

7T2 71'2 7Tz

first integral  second integral
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The identity ¢(2) = 2/6

Fourth proof: the residue theorem

The following can be proved using the residue theorem from
complex analysis.

Theorem (Summation of rational functions)

Let P and Q be polynomials with deg @ > deg P + 2 and let
f(z) = P(z)/Q(z). Let S C C be the finite set of poles of f. Then

Nli_r>noo Z f(k)=— Z residue,—p(mf(z) cot(nz)).
kfg—SN pES
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The identity ¢(2) = 72/6

Let's take f(z) = 1/Z2. In this case S = {0} and the theorem
gives a formula for the sum

1

Since the polar set S consists only of 0, the preceding summation
theorem shows us that this sum is nothing but

—residue,—o(m cot(rz)/2?).

That is, the theorem immediately gives us the formula

Z2

¢(2) = —g - residue,—g <
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The identity ¢(2) = 72/6

We have
residue
PN
t 1 b
M=*<E+b+cz+dz2+---> = ‘334_72_;_ < +d+- -
z2 72 \z z3 z z
and hence
, cot(mz) 1 d? [ 5 cot(nz) T
residue,—g ( 2 ) =5 42 Z3. — 0 =-3
z=

Putting everything together shows that

)=~ oo (S52) - () (- - ¥
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The identity ¢(2) = 72/6

Fifth proof: Weierstrass product

Let P(X) be a polynomial of the form
P(X) =14+ nX)(1+rnX) - (1+ mX).
Then the coefficient of X in P(X) is equal to

n+r-4+---+r.
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The identity ¢(2) = 72/6

The sine function is like a polynomial: it has a Taylor series

) X3 X5 X7
Sm(X):X_a—i_H_W—F'“

and a Weierstrass product

sin(X) :Xﬁ <1 - (;;2)2> .

gD ()

n=1
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The identity ¢(2) = 72/6

In analogy with polynomials, the identity

e ()

n=1

suggests that the coefficent of Z should be the sum of the
reciprocal roots on the right. That is:

1 -1
ERIC:

n>1

2

and hence ((2) = %
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The identity ¢(2) = 72/6

Sixth proof: moduli of elliptic curves

Let
H={zeC|SJ(z) >0}

and let SL»(Z) act on H via fractional linear transformation. Then
SLa(Z)\H
is the coarse moduli space of elliptic curves, and one can show that

/ dxdy _ 2((2)
S

LE\H V> ™

But this integral can be computed explicitely and is equal to /3.
Hence ((2) = 72/6.
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The identity ¢(2) = 72/6

Seventh proof: probabilistic (as in, this is probably a proof)

Euler used unique factorization to prove that

This Euler product is taken over all primes p.
The probability that an integer is divisible by p is 1/p.

This is independent among numbers, so the probability that two
integers are simultaneously divisible by p is 1/p.
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The identity ¢(2) = 72/6

Recall: coprime integers share no common prime factors.

The probability P(coprime) that two random integers are coprime
is the product over all primes p of the probability that they do not
share the prime factor p.

Thus, the Euler product for {(s) shows that
. 1 1
P(coprime) = H 1-— 72) = ¢(2).

p

So to prove ((2) = 72/6, you just need to choose enough random
pairs of integers and test whether they're coprime!
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The identity ((—1) = —1/12

Overview

© The identity ¢((—1) = —1/12
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The identity ((—1) = —1/12

In what sense does 1 +2 + 3+ 4+ ... = —1/127

Talk:Zeta function regularization

From Wikipedia, the free encyclopedia

This article is within the scope of WikiProject Physics,a | _,

collaborative effort to improve the coverage of Physics on :“ﬂ" Physics portal
Wikipedia. If you would like to participate, please visit the

project page, where you can join the discussion and see a list of open tasks.

This article has been rated as Start-Class on the project's quality scale.

This article has been rated as Low-importance on the project's importance
scale.

—
l On the face of this this article appears to be rubbish. Can anyone make sense of it? Billion 15:93, 8 November 2003 (UTC)I

| cleaned up the format and added some links, but it's not my field and | can't say anything about the content. It seems to
closely follow Casimir_effect#Calculation, so maybe it could be merged or redirected there. Tom Harrison &' (talic} 17:01. 8
November 2005 (UTC)

I improve some explanations and make clear the relation to Casimir effect. ~Enyokoyama (talk) 12:53, 6 January 2013
(UTC)

Figure: Wikipedia talk page for the article Zeta function regularization,
February 25, 2013
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The identity ((—1) = —1/12

Of course it's not literally true that the series
1+2+3+4+5+---

converges in the conventional sense of convergence.

There is a deeper truth hidden in the seemingly absurd claim that

14+24+3+4+45+=—1/12,
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The identity ((—1) = —1/12

Zeta as a function of a complex variable

As observed by Riemann, the sum defining the zeta function

makes sense for all complex s with R(s) > 1.

Proof: If s = x 4+ iy with x > 1, note that

- 1
C(S) - Z eflog(n)y px’
n=1

Since ‘ef'°g(”)y‘ =1, this series converges absolutely if {(x) does.
Since x > 1, we win.
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The identity ((—1) = —1/12

Analyticity of ((s)

The resulting complex zeta function is analytic (a.k.a. complex
differentiable).

Proof. The partial sums are clearly analytic, being a finite sum of
exponentials. It's not hard to prove that they converge uniformly
on regions R(s) > 1+ ¢ for ¢ > 0. A standard result in complex

analysis then implies that ((s) is analytic in the region R(s) > 1.
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The identity ((—1) = —1/12

Analytic continuation

Analytic functions are very rigid — they satisfy the property of
analytic continuation. More precisely, one proves the following in a
first course on complex analysis:

Let U C C be an open subset and let f be analytic on U. Let
V' D U denote a larger open subset, and assume further that V is
connected. Then there exists at most one analytic function g on V

such that g|y = f.
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The identity ((—1) = —1/12

Another fundamental contribution of Riemann to the study of ((s)

is his proof that ((s) continues analytically to an analytic function
on C— {1}

Since ((s) has a pole at s = 1, this is as good as it could be!

Note: outside the region R(s) > 1, the function ((s) is not defined
by the usual summation. This distinction is crucial!
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The identity ((—1) = —1/12

Functional equation

Still another fundamental contribution of Riemann to the study of
¢(s) is his proof of the functional equation:

¢(s) = 2575 Lsin (%5) (1 —s)¢(1—s),

where I'(s) denotes the gamma function defined via the integral

F(s):/ tse_tﬂ.
0

Note that the functional equation relates ((—1) with ¢(2)!
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The identity ((—1) = —1/12

The value ((—1)

So, if we plug in s=—1to

s

¢(s) = 2575 Lsin (?) M1 —s)c(1—s)
we get
¢((=1) =277 2sin(—7/2)T(2)¢(2)
() (3)
7%,
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The identity ((—1) = —1/12

Zeta function regularization

Physicists will often use this sort of technique to assign finite
values to divergent series. Let

at+a+a+---

denote a possibly divergent series.

To assign it a finite value, define an associated zeta function:

A =2 5

If this converges and continues analytically to s = —1, then one
can think of the value (a(—1) as “acting like” the sum of the
series a; +a» +az+---
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The identity ((—1) = —1/12

Stricly speaking, the sum
aita+az+---

would not necessarily converge to (a(—1) in any rigorous sense.
Nevertheless, it turns out to be physically useful to assign such
“zeta-regularized” values to certain divergent series.
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The identity ((—1) = —1/12

The value oo!

On this note, we'll end by discussing how to assign a “value” to
ool. Here is a highly suspicious derivation:

ol =1-2-3-4.-5...

= exp (Z Iog(n))
n=1
= exp (—C’(O))

Since ((s) is analytic on C — {1}, the value ¢’(0) is finite!
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The identity ((—1) = —1/12

One can use the functional equation for ((s) to deduce that

~(/(0) = 5 log(2r).
Hence,
ool = exp(—C'(0)) = exp((1/2) log(2m)) = V2r

. right?
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The identity ((—1) = —1/12

Thanks for listening!
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