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- Topics in Algebra
Notes : Part 1 Avinash Sathaye

1. Curves In general, we will assume that our ground field & is algebraically closed and characteristic
zero. This assumption is not always needed and we may usually remark when it is not needed. A
curve for us is usually given as a plane curve f (z,y) = 0. The curve is irreducible if the polynomial

f(z,y) is irreducible and usually we want the polynomial not to have multiple factors, the curve
1s then said to be reduced.

Another view of a curve is something parametrized by a single variable, so a curve might be
given by a parametrization z = p(t),y = g(t) where p, ¢ are rational functions. It is a well
known theorem (Liiroth’s) which says that we can always find a rational function h(t) such that
k{p,q) = k(h). Being parametrized by rational functions is, however, a very special property.
Most curves are not parametrizable! Simplest example is y? = z + 2% which is doable from
scratch!

2. Parametrizations, places and valuations Even though curves are not parametrizable, they
have power series solutions centered at various points. A power series solution may be thought
of as & = u(t),y = v(t) with u,v € k{(t)). As before, we can take an optimal £ by assuming that

k{(u,v)) = k((t)). Moreover, we can take advantage of our assumptions on the field to normalize
the parametrization as follows. '

First of all, we either have the ord,(u), ord ;(v) as both nonnegative or at least one of them might
be negative. In the first case, we can find constants @, b so that ord(z — a) > 0,0rd (y — b) > 0.
We can then further normalize the parametrization by arranging u = a + 4,y = b - n(t) with
positive integer d, using the special assumption on the field k. The series 5(¢) € k[[f]] is still
not unique, but is well defined only up to a change ¢t — w# where w is a d-th root of unity.
This parametrization (t¢,7(t)) leads to a “valuation” defined by v(h(z,y)) = ord (h(t%, 5(t)
defined for all rational functions h(z, y) which are well defined under the substitution, this means
that the numerator and the denominator of & don’t become zero after the substitution. Note
that the alternate forms n(wt) do not cause a change in the valuation. The valuation has the
usual properties v(gh) = v(g) +v(h), if v(g) + v(h), then v(g + h) = min(v(g),v(R)) and if
v(g) = v(h) = m, then v(g+ h} > m. Moreover the nonzero elements ¢ € k& have v(a) = 0. Since
k is algebraically closed, it is easy to deduce that v(g) = v(h) = m implies that there is a unique
¢ € k such that v(g + ch) > m.

We describe the above situation by saying that » is a valuation {or a branch) of the curve centered
at the point (a, b). The parametrization (or its conjugacy class) ¢, n(t) is said to define a place of
the curve at the point (a,b). Note that the description of the place also depends on the choice of
coordinates and we really think of the valuation as the main object, the place being a convenient
way of evaluating the function v. the resulting valuations or places are said to be at finite distance.

In case, the parametrization gives negative orders for either x or ¥, then we have to arrange things

a bit differently. If z has negative order, then we can set z = ¢ where d < 0. Then y = n(t) as

before, except n(t) € k((¢)) might be a meromorphic series. We again get the equivalence class

of places and a valuation defined just as before, except now, even polynomials may have negative
- v-values. Such valuations are said to be valuations or branches at infinity.

'The power series 7(t) is also known as a Puiseux series in either case.

3. Finding the places. One way of finding the branches at a pbint concretely is thru Weierstrass
Preparation Theorem and Newton’s Theorem on places (Puiseux series). This goes as follows.
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First assume that we wish to find the branches at finite distance and arrange the center to be
the origin (0,0), by a suitable translation. Tet d be the order of the polynomial f, so we can
write f = fq+ fas1 +--- where f; denote homogeneous pieces of degree ¢ and we assume that
fa # 0. Then by a further linear change of coordinates we can assume f; to be monic in y
and can write [ = agy® + a1y + ---ag where ag € k[[z,y]] is a unit and a; € k[[z]] with
ord ;(a;) > 4. The Weierstrass Preparation Theorem says that we can factor out some unit a so
that f = a(y® + biy®" + - - - + by} where b; € k{|x]] have order > i. The idea is to first factor out
ag and rearrange the resulting expression in a similar form, then factor out the new coefficient of
y? and iterate! The process can be shown to converge; both formally and in the usual sense of
convergence if you start with convergent coefficients.

Newton’s Theorem then guarantees that the polynomial F' = y%4+b,;4% 1 4+ - -+by can be factored
as [1{y — ai(z) where o are fractional power series in . The resulting branches are then obvious!
Explicitly, write F' = [J(F;) where F; is a monic polynomial of degree d; in 4. Then F; gives a
parametrization z = t%, y = 7;(¢) such that : '

F= 1] (y —n(wt))

wihiz=1

The resulting valuation is as described above and does not depend on the choice of the conjugate
power series r{wt). :

For branches at infinity, the process is similar. We arrange f to be monic in y {for convenience)
and factor in the algebraic closure of the formal power series ring in z~!. So, the parametrization
is now of the form z = t~%,y = n{wt) € k{(t)).

. Intersection multiplicities. Given any point P{a,b) in the plane, we need to consider the
so-called intersection multiplicity of f with another curve g. In case f has no multiple factors
and no common factors with g, this is defined as

(f,g9)p = > v(g) where the sum extends over all valuations of f centered at P

v

In case f has multiple factors, say f = [1 f]* we define
(f; Q)P = Z'ri(fi,g)P

It can be shown that the intersection multiplicity is equal to the length of the ideal generated by
f, g in the local ring of the point P. and hence is symmetric in f, g.

We will extend this definition to various other natural situations thus:

([ 9)0 =D v(9)

where the sum is extended over all the valuations of f at infinity. Suitable adjustment is made
for the case of multiple factors and again we omit the case of common factors. This does not have
a direct interpretation as a length, but it is still symmetric in f,g. (This becomes clear after the
Bezout Theorem below.)

- a set of points 8 :

(f:g)S = Z(fag)P
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In case the set S consists of all points in the plane, we use the word fin. In case the set S is
the set of points on some curve h, we simply write h, instead of making a notation for the set of
points of h.

. Bezout Theorem A useful formula for calculating the intersection multiplicities is

(f,9)im+{f1 9o =0

Of course, we assume that f, g don’t have common factors. In the trivial case when ¢ is a nonzero
constant modulo f, the formula has no nonzero terms and is obviously true.

- This is equivalent to what is usually known as the Bezout Theorem for plane curves. We now
outline a proof. First note that it is enough to prove it for the case when f is irreducible, since

all terms are additive with respect to factors of f. Also, we can assurme that g is not a constant
modulo f. '

Next, we note that we can assume without loss of generality that at each valuation of f at
infinity, we have w(g) < 0 or in other words the coordinate ring A = k{x, y|/(f) is integral over
k[g] where § denotes the image of g modulo f. First note that by taking a general linear change
of coordinates in z,y we can arrange f to be monic in y and hence z satisfies w(z) < 0 for all
w. Now, for a large enough d, gz? and x¢ will both satisfy the desired condition and the desired
formula for g can be proved by subtraction.

Also note that under our assumption, we can write

(£, 9)5in =D _v(9)

where the sum extends over all valuations v of f for which v(g) > 0.
Next we consider the simple case when ¢ = z and f is monic in y of degree n.

In this case, it is easy to verify from the definitions above that

(f, 2+ Dare = —{fi2)o =1

for every constant c. In fact, we use the symmetry for {, ) at finite points to calculate the term
(f, + Cc)zye by looking modulo the curve £ + ¢ = 0 and note that we simply get the sum of the
multiplicities of the factors of f{—e¢,y) which adds up to the degree n. It is easy to check that
—n = {f, 2 + ¢} from the definition. Thus the case when g = z -+ ¢ is completely proved.

Now, for the general case, let I denote the function field of f (The quotient field of the coordinate
ring A.) If § denotes the image of g modulo f, we can find some polynomial h such that hel
satisfies k(7, ) = L and the minimum polynomial of A over k{g] is a monic polynomial & of some
degree m which naturally coincides with the field degree [L : k(g)]. Thus ®(g, k) = 0 is monic of
degree m in h. Note that the set of all valuations v of f for which v(g) > 0 coincides with the

set of all valuations for @ at finite distance and from what we have proved already, we get that

F,9)pm=m==> w(g)

where the sum extends over all valuations w of f for which w(g) < 0.

Thus we have proved the desired Theorem.



6. Comments on the formula. Assume that ¢ is not a constant modulo any factors of f.

Let us list the valuations of f at infinity as vy,-- -, v, vy, - - - v; where v;(g) > 0 for i < [ and
vi(g) < 0 for i > L. It is clear that for most ¢, we get that v;(g +¢) = 0 for ¢ < [. Indeed there
are at most / values of ¢ for which this fails (one for each v;). Note that for ¢ > I we have that
v;(g + ¢) is independent of ¢. For a general value of ¢, we have

<fag+c>fm:—zva g+C Z'Uf, —

i>! il

where this common number is the field degree [L : £(7)] in case f is irreducible. In the general
case it can be interpreted as the sum of the field degrees modulo various factors of f with proper
adjustment for multiple factors.

The formula can be interpreted as saying that the sum of zeros of a function g + ¢ modulo the

curve f coincides with the sum of its poles, either one being the covering degree of the function
field over k(g).

Since, we have avoided the projective space altogether, the usual interpretation of Bezout Theorem

concerning plane projective curves is not given and is left as an exercise! One interpretation is
given below, however!

7. A Bertini Theorem Now assume that f has no multiple factors. Let us define N(f,g) to be
the number of common points of the curves f, g at finite distance. We also assume that g is
not a constant medulo any factors of f. We show that for all but finitely many ¢, the number
N(f, g+ ¢}, coincides with the quantity m = [L : k(g)] discussed above.

As before, we may assume that f is irreducible, since the theorem can be verified separately for
each component.

Further, as before, we first prove the case when g = z. In this case, our claim reduces to proving
that the polynomial f(-c,y) has distinct roots for all but finitely many c. This is evidently true
since a necessary condition for f(—¢,y) to have a multiple root is that the discriminant of f with
respect to y is divisible by (x + ¢). Since the discriminant cannot be identically zero, there are
only finitely many such factors. For a general g, we can either go to the curve & as shown above,
or we can show that a necessary condition for {f, g+ ¢)p to be greater than 1 is that the Jacobian
J(f, g) must have a common point with f at P. Now, the J(f,g) can have only finitely many
points in common with f, since otherwise it will be identically zero modulo f. This will prove
that (f,9+ ¢)p = 1 for all but finitely many c.

To see that J(f,g) cannot be identically zero modulo f, we could proceed thus. Consider an
irreducible relation between x,¢ modulo f given by #(x,g) = 0.. By the usual differential
calculus, it is easy to see that the image of J(f, g} modulo f is equal to the image of — fy—':%ﬂ and
this cannot be identically zero modulo f. The details are left to the reader.

8. Differentials The above also leads to a quick definition to what is termed as a canonical divisor,
or the divisor of a differential. Differentials are formal objects which behave like derivatives
with respect to an unspecified variable. For an irreducible f and polynomials gy, g, which are
non constant modulo f, we get a relation ¥ satisfied by the images §;, % modulo f. Then the
differentials are connected by the relation

\I’gldgl + ‘I'g.zdgz ={}



where all expressions are considered modulo f. If ¢ is a constant modulo f, then we may declare
dg = 0. We may often write dg for dg, if we are clearly working on some curve f.

Given any valuation v of f and a non constant function ¢, we can define v(dg) = ordt(d-d—(%) where
G = g(t%,9(¢)) is the result of substitution of the parametrization defining the valuation. If u is

some function with v(u) = 1, then it is easy to show that v(dg) = U(%) where %% is computed as
explained above. We simply have to use the fact that the parametrization defining the valuation

makes our original function f vanish.

Let us now observe a simple but useful fact: If v(g} # 0 then v(g) = v(dg) +1. T v(g) =0,
then there a unique ¢ depending on v and g such that v(g + ¢} > 0 and for such a ¢, we get that
v(g -+ ¢) = v(dg) + 1. Many mistakes are caused by ignoring this situation of v(g) = 0.

Let us also derive a useful formula for {f, g)p at a finite common point of £, g.

(f,9)p =3 v(g)= 3 (v(dg) +1) = (f,dg)p + (], P)
v—=+F P
where the term (f,dg)p is an obvious generalization of our notation and v(f, P) denotes the
number of branches of f centered at P. We will also extend the notation to v(f, 00) to mean the
number of branches of f at infinity.

All of this runs into technical problems when the characteristic is positive or the field is not
algebraically closed! The reader should look up the details elsewhere!

. Divisors We can now define formal divisors on an irreducible curve f. A divisor D is a formal
sum of valuations D = ¥, v(D)v where the coefficient v(D) is an integer which is zero except for
finitely many valuations v. We take all valuations of the function field of f for this consideration.
If f is reducible, but without multiple components, then the divisors can be considered separately
on each irreducible component.

The degree of a divisor D is defined to be deg(D) = ¥, v(D).

For convenience assume that f is irreducible and g is non constant modulo f. As above, assume
that the valuations of f at infinity are listed as vy, -+, v, -+, v, where v;(g) > 0 for 4 < [ and
vi(g) < Qfor i > 1.

We define the divisor of zeros as < g >, = ¥,p)>0 v(g)v . Note that then the degree of the divisor

Z(g) coincides with
> v(g)={[.9)pm+D_uilg)

0(g)>0 i<l

The polar divisor of g is defined as < g >_< — > u(g)<0 U{g)v.

The Bezout Theorem now can be interpreted that the degree deg(< (g + ¢) >) is constant for
all ¢ and coincides with the degree of the polar divisor deg(< g >_), which in turn gives the
covering degree of the function field of f over k().

We define the divisor < g > to be simply the full sum < g >= ¥, v(g)v, for a non constant g.
Then the Bezout Theorem also gives that the degree deg(< g >) is zero. The definition of < g >
can be easily extended to rational functions g with the same conclusions. We also extend it to
nonzero constants by declaring < ¢ > to be simply 0 = 2 0v or the divisor with all components
zero. Naturally, its degree is also zero.
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This is the promised interpretation of the number of zeros and poles. The calculations need
careful modifications for reducible f, which are left to the reader.

A canonical divisor is defined to be any divisor of the form < dg >= 3., v(dg)v for a non constant
function g. Note that given two non constant functions 91, g2 the divisors, then we clearly get,

d
<dg >=< dgy >< d—gl >

')

In particular the degree of a canonical divisor does not depend on the choice of g and is one of
the important natural constants associated with the curve.

Suppose f is as general as possible so that it may be reducible and possibly with multiple factors.
We propose to define a canonical divisor for it by taking a ¢ which is not a constant modulo
any of its factors and by considering the divisor 33, v(dg) which extends to all the valuations of
the functions fields of various irreducible components of J and we think of it as a divisor on the
reduced curve f* associated with f.

The geometric genus P,(f) of f is then defined to be the same as that for its reduced curve f*
and defined by stipulating that the degree of a canonical divisor is equal to 2P,(f) — 2.

Unlike the case of irreducible curves, Py(f) may come out negative and is introduced mostly as
a notational convenience.

A calculation. Let us continue with the above notation and further assume that f has no

multiple factors. Set N(f,g) to be the number of common points of f, g at finite distance. Note |

that we know:

m= Y v(g+c)+ Y. wlg+c)

fote 1<ig!
for any c. Here the first sum is over the common points of f and g + c.
Thus we can write

m—N(f,g+c)= > ((fig+dr—-1+ 3 wlg+o)

P on f(Ng+e vi{gte)>=0
Also note that by the Bertini Theorem above, for a general value of ¢, m=N(f,g+c).
Using the calculations with differentials above, we get

m—N(f,g+c)= 3 (fidg)p+v(/,P)-1)+ 3 wlg-+e)

Pon fg+e vi{g+c)>0

Note that for any fixed ¢ appearing in the last summation, there is a unique constant ¢; for which

vi(g + ¢;) = vi(dg) +1 and for all ¢ # ¢; the term v;(g + ¢} = 0 and hence does not appear in the
formula.

Adding up all the expressions for various ¢, we get:

Y Am—=N{f,g+))= 3 ({(f,dg)p+v(f,P)-1)+ 3 (w(dg)+ 1)

c Ponf 1<i<i
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Or, simplifying:
2(m—=N(fig+ec))= > (fdg)p+v(f,P)-1)+1+ Y v(dg)

e pPon f 1<i<i

Noting that m = — 3., vi(9) = — Licics(vi(dg) + 1), we get that Ycizs Vildg) = —(m +s = 1).
Combining this with the above expression we get

Y (m—N(f,g+¢) = Z doy+ > wh,P)-1)+l+m+s—1
¢ pPon f
where the first sum extends over all the valuations of f and hence gives the degree of a canonical

divisor, as explained above. Note that s is the number of branches of f at infinity and hence we can
conveniently define v(f,oc) = s.

Thus we get the formula:

2(m=N(f,g+0) =2P(f) - 2+m+s+ 3, (w(f,P)-1)

c Pon f
or in a better arrangement:

2 A(m—=N(f,g+¢) =2P(f) + (m~ 1)+ (¥(f,00) = 1)+ > (v(f,P)—1)

c PON f

The quantity 1 —m + ¥ {m — N(f, g + ¢)) is now easily seen to be independent of our choice of ¢
(subject to the condition about being non constant modulo all factors of f) and we define the invariant

r(f) =2P,(f) + (v(fi00) = 1)+ > (v(f,P)-1)

P oOn f

1t can be shown that this coincides with the Euler Characteristic of the plane minus the curve, but
the point of the above discussion is to make a clear computable definition of this invariant. .

If f is a curve with possible multiple components, then we define r(f) = r(f*), where f* is obtained
by keeping only one copy of each multiple factors. We will develop more explicit formulas for r{f) next.

11. A simple formula for r(f) in the reduced case. First consider the case when f = f*, i.e.
when [ is reduced. Without loss of generality, we can arrange f to be monic in y of degree n.
Taking z = g and working as above, we note that m =n and [ = (.

Working as above, we see that

~N(f,z+c)= Y ({(iz+c)p~1)

P O fja+tce

It is clear that at a point P given by 2 = —¢,y = —¢’ we have {y + ¢,z + ¢)p = 1 and thus we
can write the term in the above summation as

{g+e,flp—~tey+p=(z+c fy)r

The last cha.nge is obtained by arguing thus: We know that modulo z + ¢, we have a unique
df df

valuation, say w at P. Also, modulo z + ¢, we have f, = dy = Ay + o)
w(f),w(y+ ) > 0, we get that

w(h) = 0= s) = wldl) - w(dly ) = wlf)~1-(l+d) =1) =wlf) -1 = (e f)r

Moreover, since
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Now we look modulo f, and note that f, = —g':% modulo f,. By an argument similar to the above,
we get that:

(ﬂf—l—C; fy)P — (f: fy)P - (f:c: fy)P

We remark that this calculation is more involved since [, may have many valuations at P and may
have multiple factors, so some contributions may have to be counted multiply. But the argument
for each valuation is the same! This calculation will fail if f has multiple factors passing thru P,

since then for some valuations w of f,, the value w(f), w(f,) might be both undefined! This is
where we use that [ is reduced.

Now we get a new formula for r(f)} as follows:

'f‘(f 1—TL+ Z (f:fy fm:fy) )
pon ¢
and this simplifies to '
() =1=n+{f, fy)rin — {fo, o) s
A simple formula for 7(f) in the general case. Now let f be general. Write f = I[ f¥* and
]etu_Htfp” - Setg_Zz(pzfzynj#zfj) fy/u

We wish to note two facts about g. One obvious thing is that modulo any factor of g, we have

fy=0,80 fy = % Thus, at any common point P of g, f,z + ¢, we have

(z+c,q)p={f,9)p — ([ P
The other fact is that at the point P as above,

(z+c fp={(r+cyger

For this, let the point be (z + ¢,y + ¢/} as above and look modulo z + ¢. Assume that modulo
(z+c), the polynomials f; have the leading terms ¢;(y+¢')*, when expanded in powers of (y+¢).

Note that under our assumption, >; u; > 0.

Then the leading term of f* modulo (z + ¢) is (T[; &) (y + ¢)2:* and the lef hand side our our
equation is then (37; ;) — 1. By a simple calculation, we see that the leading term of g modulo

(z +c) is
(T ) (X passs) (y + &) s

This clearly leads to the same value for the right hand side and our formula is proved.

Thus we can use g in place f, in the simple formula for 7{f) to give

T(f) =1-n-+ degy(u) + (fw fy/u>fin - (f:m fy/u>f
where as before, we assume that f is monic in ¥ of some degree n.

Variation of r(f).

We now come to the main part of the theory of r(f) which describes the variation of r{f + ¢)
as ¢ varies. We prove the main Zeuthen-Segre formula in our setup which states that for all but
finitely many values of A, we have:

r(f+A) =D r(f+X) —7r(f+¢)

[
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Moreover, the terms on the right hand side are always non negative as long as the general curve
[+ X is irreducible.

We first prove the equation and then the non negativity of the terms.

The proof of the formula First we set « to be the GCD of the partial derivatives of f,, Iy
where we assume f to be monic of degree n in y as usual. Set g = fy/u. For every constant c, set
e to be the products of the components of 4 which divide f + ¢ and note that ¥ = I1.u. where

the product is has non-unit terms for only finitely many ¢. From what we have seen above, we
can deduce that

T(f'l'c) =1- n+d6gy(uc) + (f +Cug>fin - (f:u:g)f+c

We only need to note that every p-fold factor of f 4+ ¢ divides u, exactly p—1 times, when p > 0
and that factors of u which are not factors of u, do not meet the curve f + ¢, so the last two
terms of the above formula satisfy

(f + ¢, g)fin — (fm;g)f-l-c - (f + ¢, f'y/uc>fin - (fwa fy/ur:)f-l-c

Now we wish to study the variation

S(r(f+X) =r(f +¢)

C

as ¢ varies and A stands for a general value.

Let us consider the valuations of g at infinity arranged so that the first vy, ---, v, are such that
v;(f) > 0 and the last vy, - - -, v, are such that v;(f) < 0. Here we have to take the valuations for
all components of g and in case g has multiple factors, we need to repeat them with appropriate
multiplicity. Under our assumption that the general f 4+ X is irreducible, we may be able to
prearrange that g is irreducible by using another Bertini theorem. We are, however, avoiding a
detailed discussion of this, since it is not essential for the proof.

Note that for 1 <7 <1 there is a unique ¢; so that 0 < v;(f + &) = v(df) +1 and v;(f +¢) =0
if ¢ # ¢;. For I < i < s, we have v;(f +¢) < 0 does not depend on the choice of c.

1t is clear that the variation of the first part 1 —n + deg,(u.) of our formula for r(f +¢) will give
2o —degy (u) = — deg, (u).
For a general value A, we clearly get

FFAN =1+t A Dm=1-n— 3 ulf)

l<i<s

Note that we are claiming that the last term (f,, g) f+x is zero for a general A, To see this, note
that f;, g don’t have any common factors by assumption and hence meet in finitely many points
in the plane. Clearly, these points do not lie on f + X = 0 for a general . In fact, we get that
[+ A is nonsingular for a general A. This is yet another Bertini Theorem!

Thus, we easily see that the variation of the second part

(f+¢,Dsin— {far §) pre

is equal to
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Z Uz f+cz sz fa:

As before, for for 1 <1 <1, we get v;(f +¢;) — vi{ fz) = v;{zx). So the total variation of the second
part comes out to be

Douil@) = X wilf) = —deg,(g) +n — 1+ r(f + A)

Since deg, (g) = deg,(f,) — deg, (u) = n — 1 — deg, (u), this reduces to: 7(f + A) — deg,, (u).

Combining this with the variation of the first part of the formula, we get the desired formula that
the total variation coincides with the general value r(f -+ X).

Positivity of individual terms Now we come to the proof that each term of the variation is
nonnegative in case f + A is irreducible for a general A is irreducible for a general A. In fact, we
have a stronger result, which says that the only situation when the general value r{f + lambda)
is smaller than a special value r(f - ¢) occurs when the original polynomial S can be expressed
as a polynomial ¢(f;) where ¢ has degree bigger than 1 and f; is a “line”. This last condition is
well know to mean that f; is a nonsingular polynomial curve or equivalently can be transformed
to just y after an automorphism of the ring kiz, y).

First note that in case u = 1, we have nothing to prove. Clearly,
T(f + A) - T(f + C) = E (U%(f + C)) + (f:m fy>f+c
1<i<l
and each term is clearly non negative.

In fact, the same argument can be made when f + ¢ has no multiple factors since then (f+e)y=
f +c. Thus, we are only concerned with the situation when f + ¢ has multiple factors. In this
case, the term of interest is:

T(f + /\) - T(f + Cj = degy(uc) + Z (Uz(f + C)) + (fm:g>f+c

v f+e)>0

As observed earlier, we can ignore the contributions from the factors uy with ¢ # ¢ and hence

without loss of generahty, we may change g = f,/u to f,/u.. We will assume that we
have done this and adjust all our notations accordingly.

Note that u. is a factor of f, as well as f +¢ and hence the last term is at least as big as (uc, ) f4e-

By recycling our old notation, we write f + ¢ = [[, f*. The expression which needs to be non
negative is bigger than or equal to the sum of contributions from each f; given as:

> (Wilfa)) + (Fi, 9) gin — degy (f3)

Uj (fi)>0
and clearly it is enough to show that each of these is non negative.

Now let d; be the degree in y of f; and let us note that

(fh g)fiﬂ = <f‘i? fiy)fs =+ Z(fi:fw)fm

WL
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16.

which is evident from the formula

g= Zpifiy II 7o

wzEl

Also note that each f; is an irreducible monjc polynomial in y of degree d; and so we have
T(fz) 2 0 and T(fz) =1- dz - (f‘ia fiy)fi - (f’n'n$? fiy)fi
For the first part, note that we can use the formula

T(ft) = ng(fi) +V(fiaoo) -1+ z (V(fiap) - 1)

Pon g
which is ¢clearly a sum of non negative terms,

Thus we see that (f;, fiydss = di — 1 and we get equality in the case when f; s nonsingular and
has r(f;) = 0. This, in turn, means that f; is a nonsingular curve with one place at infinity
and genus zero. This is also seen to be a polynomial nonsingular curve. Such curves are well
known to be isomorphic to “lines” and the famous Abhyankar-Moh-Suzuki theorem says that by
an automorphism, the f; can be made to be just g.

In our case, we fail to get the desired result only when we have the following:

® some f; is a polynomial nonsingular curve.

¢ f; does not meet f, for w # i and 50 fy, = ¢y + fih,, for some polynomial h,, and constant
cy # 0,
Note that at least one of the hy 1s not a polynomial in i, for otherwise, the whole f+e
and hence any general f + )\ will become 2 polynomial in f; of degree greater than one. This

contradicts the assumption on [ not being a polynomial expression of degree af least 2ina
line fl'

* v;(f;) = 0 for every valuation v; with 1 < J = 1. This in turn means that (f; + ¢, g) fin 18
independent of ¢.

We will show that the last condition above cannot hold, if the earlier ones are valid. Thus proving
the result!

A calculation with lines. Our notation has gotten very complicated by now. So, let us isolate
the situation and set up new notation to state and prove our result.

Let F' =T; 7 be a polynomial and let f1 be a line (or nonsingular polynomial curve). We are
considering a finite product but have left out the number of factors to conserve symbols. Let
dy = deg,(f1).

By using the AMS theorem, we will assume that there is some polynomial G such that k[f;, G] =
k[z,y]. Let us further expand the polynomials f; for i > 2 ag polynomials in f;, G and assume
that

Ji=G i f1) 4 -

where f degree of ¢; is §; > 1 and the remaining terms have smaller G-degree. To simplify
calculations, we will arrange ¢;{f1) to be monic in f;. Note that r = 0,01 = 1. We further
assume that 37, r; > 0, so that F does not reduce to a polynomial in f alone. Also, we note that
each non constant term in the expression of each of the f; is divisible by fi.

11



17.

Our polynomial g above can now be recast ag:

o= (L)

This translates the setup in the previous section except for the last condition on the constancy
of (f; + ¢, ¢) fin. It translates thus: ‘

Let us define the degree function 6, by setting 6.(H( f1,G)) = degg(H(e,G)). Now the last
condition above means that:

8.(¥) is a constant equal to 0c{fry) or deg,(fi) —1=d; —1

We will deduce a contradiction!
We need to determine 6.(%) and in turn need to estimate O ((fEGY),.

Note that (feGh, = af{‘_lefly + bf{‘Gb“le. We will show that 0.(Gy) < 0.(f,) for all ¢ and
hence we get that the highest G-degree terms of (f2G"), come from aff~ 'GP f1, whenever a > 0.

Write the derivative fi, = «G%~! + smaller terms where we are assuming the known fact that
the 6.(f,) = di — 1 is independent of ¢.

Calculation of ¥ leads to the term with the highest possible degree:
;3 —~1 .. L
¥ AT () (G
and since this is clearly nonzero, we get that

96(‘11) =d; — 1+ZT¢

This is a contradiction, since 37, r; > 0.

Thus, it remains to prove the calculation of 6,. Indeed, the heart of Abhyankar-Moh theory can .
be described as a calculation of such functions in a more general setting. We describe this next.

Calculation with general curves with one place at infinity. Now let f be an irreducible
curve with one place at infinity. It is easy to see that highest degree coefficients of f in any
coordinate system are nonzero constants (in other words f is essentially monic in all variables).

Thus we can assume that f = y™ ++ a1y + - - q, where q; € k[z].

The one place at infinity gives rise to a valuation v and this is the only valuation of the function
field of f which has negative values for at least some polynomials. In fact, every polynomial
which is non constant modulo f has to have a negative value at v, since that is the only possible
pole for it!

We sometimes prefer to consider the negative of the v-function and define it as & (h) = —u(h)
which is defined for all rational functions A for which f does not divide the numerator or the

denominator (in the reduced form of 4). Let D denote the derivative %

The Abhyankar-Moh theory of curves with one place at infinity produces a very special basis for
the polynomial ring k[z,y]. Briefly, there is a set S of n + 1 polynomials T = fg, fi, -, fa1
such that f; are monic of degree i in y and all the polynomials {27 f;} have distinct v-values.

12



18.

The set of all polynomials can now be expanded uniquely as polynomials in f with coefficients
as combinations of {z7f;}.

Thus for a polynomial h(z,y), the value v(h) can be determined by simply expanding it in this
way and picking up the least value clement among the terms not divisible by f.

Moreover, the translates of f have all one place at infinity with the same set § giving the same
values in the corresponding valuations.

Finally, for each of the terms f;, we have explicit formulas for v(f;) — v(D(f;)) and we can deduce
the value of v(D{h)) using this information.

In case of a line, the function . mentioned above is the same as the negative of the valuation at
infinity for a translate by ¢ and we get the desired result,

So, now we proceed to the:

The detailed formulas of the Abhyankar-Moh Theory. We are interested in a plane curve
[ € k[X,Y] where k is as usual an algebraically closed field of characteristic zero. The theory
works in more general cases when one of the degrees is not divisible by the characteristic, but we
will not worry about that.

We need to make a distinction between polynomials and their images modulo f, so we have
switched to capital letters to denote our polynomial variables. Let ¢y k[X, Y] — Kz, y| = A
be the canonical map where we go modulo f and we will denote the image ¢;(h(X,Y)) simply
by h(zx,y) whenever convenient. The ring A is, of course, the coordinate ring of the plane curve
f. ,

The main assumption is that the curve [ is assumed to have ome place at infinity. This
implies that the curve is already irreducible and so A is an integral domain. We let X denote
the quotient field of 4 and let V denote the unique valuation ring of K/k which does not contain
A. Let v denote the corresponding valuation and let § denote the “degree” function defined by
0(h) = —u(h). Let I'(f) = I'(A) denote the degree-semigroup {§(h(z, ))|0 # A(x, y) € A}.

Also, it is easy to see that the polynomial f(X,Y) is essentially monic in X , Y, meaning that the
coefficient is a nonzero constant. We may use Abhyankar’s “nonzero” 4 to denote any unspecified
nonzero constant, which may be used several times in an expression with the understanding that
it may represent different values in different locations.

Clearly, essentially monic polynomials can be actually made monic either by a convenient change
of variables or simply by changing f itself by a constant multiple.

Thus let

FEY)=Y"+ AX)Y™ 4 4 fu(X) € KIX][Y).
We assume that n > 0, since otherwise, f is just a linear expression in X and needs
no explanation!

By Newton’s theorem, there is a Puiseux series expansion z — Ty =n(t) € k((¢)) such that

fETY) = H (Y — nlwe)).

wh=]

As already noted, the power series n(t) is unique up to the change £ — wi. Let S — Supp (n{))
denote the support of the power series, meaning the set of exponents with nonzero coefficients.
Clearly S does not depend on the choice of n{t).

Inductively, define a sequence of h characteristic pairs as follows.
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19.

e Ifn=1, then we set d, = 1,h = 0 and stop.

¢ Let @i = min{S) and d;, = n. Let dy = GCD (q1,d1). Note that ¢ is also equal to —m =
—degx (f(X,Y)). For convenience, as well as historical reasons, let m; = —m = ¢,.
If dy = 1, then set h = 1 and stop!

e If dy > 1, then let
My = min{s € S|s is not divisible by da} and let gp = my — my.

Set dy = GCD (qo, da). T dy =1, then set & = 2 and stop.

¢ Having defined sequences ¢;, d;, m; from i = 1- .- ;4 =1, as well as d; define:
my = min{s € S|s is not divisible by di} and let ¢ = my — my_,.

Set dip1 = GCD (qp, dy): If dit1 = 1, then set h = [ and stop.

¢ Finally, for convenience we display the expression n(t) to highlight the characteristic terms
as:

nt) = ont™ + -+ @t™ + - - + alphagt™ o - - -

By Newton’s Theorem, the GCD of n and members of S must be 1, for otherwise f(X,Y) acquires
multiple factors! Thus the process terminates in a finite number h of steps and we say that the
curve f has i characteristic pairs at infinity.

Now we define several auxiliary expressions based on the above sequences which will be used in
calculations.

For i =1...h define:
5 _ _ _ s
S,;-——Zq]‘dj, Tz'—Si/di, (53'——'!‘3', Ny = ——,
j=1 . di“l"l

We also define ro = —n, 8y = 7.

Polynomials associated with a one place curve.

Note that the subring B = k[z] of A is isomorphic to a polynomial ring and that A is a free
module of rank n over B with a basis 1, Y, -+, ™", We wish to change this to another free basis
with the property that its values {(and hence the degrees) give distinct residues modulo n. Such a.
basis has the advantage that the value of any polynomial u(z, ) can be simply read off from the
lowest value term in its expansion and leads to explicit formulas for the degree-semigroup T'(f).

What we will construct is a sequence of polynomials Gy, Gy, - -+, Gy, in k[ X, Yiandlet g4, 91, -, g5
be their images modulo f.

Let
Q:{g“:g@”gi‘lw--gzﬂoguuEZanduz—E%With(}gui<nz- for1 <i<h}

It is an easy exercise to check that the monomials g* in £ with vy = 0 are n in number and will
give the desired basis.

The polynomials G; are constructed as follows.

14



Let Gy = X, Gy = Y. For each i from 2 to } define G to be the approximate di~th root of f.
By this we mean that G is the unique polynomial of Y-degree n/d; satisfying the condition that
degy (f ~ GY/™) < n — njd;.

The existence of such an approximate root is proved by iterating the so-called Tschirnhausen
operations and is explained thus:

Let d be any factor of n and start by setting G = Y™ Write the G-adic expansion of f as
f=G"+a1G* + ..., where g; are polynomials with ¥-degrees less than n/d. If a; = 0 then
we have the desired approximate d-th root. Otherwise replace G by G + ar/d. Tt is easy to show
that the Y-degree of o, steadily decreases until a, actually becomes 0 (and then the polynomial
G stabilizes!).

The major point of the Abhyankar-Moh theory is the following set of results:

(a) The polynomials G, -+, Gy are themselves polynomials with one place at infinity having
respectively 0,---, A ~ 1 places at infinity.

Moreover, if we let 7;(¢) be the corresponding Puiseux series for G; with ¢ > 1, then we can
compare them to n(¢) as: ‘

n(t) = n:(t%) +6-¢™ 4+ higher terms.

(b) v{g;} = r; for 0 < i < h. This is easily checked using the above comparison of branches.

(c) If we take distinct monomials g* and ¢ in Q such that u; # u; for some 4 > 0, then v(g™)
and v(g"') distinct modulo n. To see this, write:

U

v(g*) — v(gu') = ro{ug — up) + cdots + ri{u; ~ u;)

where j is the last integer with uj # ug. It is easy to check that all terms on the right hand

side of the equation except the last are divisible by d; while the absolute value of the last
term satisfies:

0 < frjus — wi)l < |rjmy| = |rjd;/dja)
since the GCD of r;, d; is easily seen to be the same as that of gj,dj or d;yq, it follows that

the last term is not divisible by d;. Tt follows that the left hand side cannot be divisible by
d; and hence by dy = n.

This establishes the necessary basis.

(d) It can be shown that the r; satisly an additional property that r;n; is in the semigroup
generated by ro,---,r;_y and indeed can be written as

Ty = Tolg + -+ - - Ty U;—¢
whereogu(;and(]guj<njf0r1§j§i—1.

(e} Moreover the r; satisfy inequalities 0 > ryy; > nyr; for 4 > 1. The first part comes from the
fact that r; being a value of some non constant element( namely g; in A), must be negative,
for otherwise, it has no poles! The second part comes from an iterative construction of the
9.

(f) In turn, T have shown elsewhere that a sequence of r; having the above properties comes
from a curve with one place at infinity. Explicitly, the conditions can be described thus:
Any sequence of negative integers r, - - - ;Tn leads to a d-sequence defined by d; = iro| and
inductively, d;,; = GCD (ri, dg). Naturally, this gives n; = difdipy Tor i =1, h.

Assume that: ' :
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dh+1 =1,
0>r,-+1>nmfor1§i§h—1
For 1 <14 < h, we have an expression of the form:

T = ToUg + -+~ Pi_1Uj_

where 0 < and 0 <uy <myfor 1 <j<i-—1.
The main irreducibility lemma. The most important lemma is a test for a curve to

have one place at infinity or for a polynomial f = Y™ 4... ¢ k[X][Y] to be irreducible
as an element of k((X~*))[¥]. The test is simply this.

Take some test function o(t) having A characteristic terms and find the order ord o( f(¢=", o(1))

If this order is bigger than s, as calculated from the characteristic terms, then f has
one place at infinity.

The idea of the proof is this. Let 01," -+, 0n be the n-distinct conjugate expressions of
o obtained by replacing ¢ by w¢, where w™ = 1. Build the polynomial

n
Yy = III(Y =05 € K((E)[Y] = k(X 1))[Y]

It is not hard to see that every root of f* substituted in f gives the same order (where
we are substituting £~ for X as well - or simply thinking of ¢ as a suitable X 1/ ")
By multiplying all these f(o;) we get an expression of the form [T(o; — p;) whose order
is bigger than ns,. By collecting terms for a fixed root P, we find that one of them, say
p = p; gives that [1(o; — p) has order bigger than s,
‘The order of the product can be explicitly evaluated in terms of the characteristic terms
and it is easy to deduce that p must coincide thru ™y, with at least one of the conjugates
;.
Nut now the root p of f clearly has 7 distinct conjugates (by looking at the part thru
my,) and 8o the polynomial F(Y) of degree n must be irreducible!
Idea of the proof of the rest of the details. Now the theory is built up by starting
with G = X, G, =Y and building them one at a time while proving all the properties
as we go along.
We illustrate how (75 is built.
Start with a brand new indeterminate Z and a test function X =+ "V =g = Zpm,
From the known factorization f(t—", Y) =TI(Y - n(wt)), we can determine the leading
term of the substitution:

[ 0) =8 (2% — (8- )/ d2ydymds o higher terms

If we collect the terms giving the leading form, they come out as PM% where P is some
polynomial of degree n/d,. It follows that if we replace Z by a root of the above leading

form, then the resulting “test function” gives itreducibility for P. (It may be necessary

to divide the test function by dy to match the above criterion, but the test comes out
all right!)

Now we a potential G, and by using test functions matching with 71 between my and
Mz We can improve it so that it matches 5 thru ms. On the other hand, it is easy
to check that all such test functions give leading forms of the type - (Z — c)® and by
comparing the expansion with an approximate dy-th root, it is possible to prove that
the approximate dp-th root has one place at infinity and expansion coinciding up to ms.
The above process is then repeated to construct G5 ete. ‘
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