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Let k be a ring (commutative and with unity as all other rings in this paper) 
and C = kL31. (For any ring R by Rrnl we denote a polynomial ring in n variables 
over R.) 

Let A be a subring of C such that C = ALlI. There then arise the questions: 

(1) The cancellation problem: Is A w kc21 ? 

(2) The embedded plane problem: Suppose that A = kr21 and FE C\A is 
a plane over k, i.e., C/(F) w kL21. Then is F an embedded plane over k, i.e., is 
C = k[F][“l ? 

In case k is a field of characteristic zero, it is a conjecture that the answer to (2) 
is “yes” and the answer to (2) is known to be “no” if k has positive characteristic. 

No counterexamples to (1) are known when k is a field. 
If k is a field, special cases of (1) and (2) have been recently studied by the 

following method. 
Let ALlI = A[T]. F or the cancellation problem take F to be a suitable 

variable in C so that C = k[F][“l and F # A. Now identify A as a subring of 
A[TJ/(F) = B. Then one explicitly constructs variables for A in terms of 
judiciously chosen variables for B w kc21, exploiting the fact that B is a simple 
ring extension of A. In [9] and [7] th iswasdoneforF=bT+awitha,bEA 
and in [lo] the case F = bTn + a with n > 1 and coprime with the charac- 
teristic of k was treated. 

In [g], the ideas of [lo] have been extended to equations F such that B is 
Galois over A, i.e., A and BC have the same quotient field, where G = Aut, B. 
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In this paper, we consider the condition that there exists a variable x E B such 
that 

+I n A Q‘ 4~~1, p = char k. 

This gives further partial results to (1) and (2) as follows. (For full details see 
Section 3.) 

(I) Let A[11 = kL31 = k[X, Y, Z] such that for some a E A we have 
a = f(X) + Zh(X, Y, Z), where f(X) E k[x] and h(X, Y, Z) E k[X, Y, ZJ. 
Moreover assume that either 

(i) k is a field andf(X) is separable or 
(ii) k[f(X)] = k[Xj and k is factorial. 

Then A w kM (See Corollary 3.7.) (This generalizes [4, Theorem 4.11). 

(II) Let A be an affine domain over a field of characteristic zero. Let 
FE A[T] M ALlI be written as F = C,” aiTi with ui E A and suppose that 
6 ,*-', 43 have a nonunit common factor u E A. Then A[T] = L[F][al * 
A[T]/(F) w ZJ21 and A w L121. (See Section 3.8.2). 

(This generalizes most of the results of [7, 9, lo]). 
An important step in establishing the above results is to find criteria in terms 

of fibers over prime ideals of k which ensure that an afhne over-ring A of k is a 
polynomial ring in one variable over k. 

This we do in some detail in Section 2 by exploiting the notion of S-inertness, 
where S is a multiplicative subset of k. (See Definition 2.1.2.) 

The results, which are related to and generalize theorems from [4, 51 are of 
interest in their own right. Questions about when F E kr21 is a variable in k[al can 
be handled by the same technique. In this direction we obtain the following 
analog of the epimorphism theorem of Abhyankar and Moh. (See 1.1.) 

(III) If k is a locally factorial Krull domain of characteristic zero and 
FE kLal such that k[“l/(F) m k[ll, then k[*l = (k[FJ)[ll. (See Theorem 2.6.2.) 

Let us note that the main ingredient of the proof is the theorem of Abhyankar 
and Moh which ensures that Llal = L[F][ll, where L is the quotient field of k. If 
char k # 0, we can prove the same theorem by adding the hypothesis that 

L(F) @ kf21 = L(F)[‘l. 
k[Q 

1. NOTATIONS AND PRELIMINARY RESULTS 

We will use the following notation. 

(1) If K is a ring, K* is the group of units of K. 

(2) If K is a domain, qt K is the field of quotients of K. 



VARIABLES IN k[x, Y, z] 153 

(3) UFD and PID stand for unique factorization domain and principal ideal 
domain, respectively. Also factorial has the same meaning as UFD. 

(4) Sym,(Q) is the symmetric algebra of a K-module Q. 

(5) A statement “A = Km]” means that K is in an obvious way a subring 
of A and A is K-isomorphic to a polynomial ring in n-variables over K (denoted 
by Km]). 

The following results are mostly well known. We collect them here for easy 
reference. 

1.1. EPIMORPHISM THEOREM [2, Theorem 1.23. Let L be a field of charac- 
teristic zero. If F E LLzl is such that L[“l/(F) M L[ll, then LIzI = L[F][ll. 

1.2.1. PARALLEL LINES LEMMA [7, 1.6; 9, Corollary 11. Let L be a field and 
0 # FE A = LIzI such that A/(F) = B[ll, where B is an L-algebra. 

Suppose that either one of the following holds: 

(i) There is a separable algebraic extensim E of L and a factor FI of F in 
E & A such that E oL A = E[F#‘l. 

(ii) L has characteriktic zero. 

ThenA =L[X, Y]withFEL[X]forsomeX, YEA. 

Proof. B has Krull dimension zero and hence B = lJ Bi , where each Bi 
is a local Artinian L-algebra. We see that: 

(1) There is a one-one correspc?dence between prime ideals of B and 
distinct irreducible factors of F. 

(2) Any two irreducible factors of F are comaximal. 

Analogous statements hold if L is replaced by any extension field E of L. 
If charL = 0, then there is a separable algebraic extension E 1 L such that 

one of the residue fields of E aI. B is E. If PI is the corresponding prime ideal 
of E or. B and FI the corresponding irreducible factor of F, then 

and 

E 0 AI(FI) 
L 

n(E$JB,p,)L1l=E[‘l 

E @ A = E[F#l by Theorem 1 .l . 
L 

Thus in either case we can assume that (i) holds. By [7, Lemma (1.6)], it is 
enough to prove the lemma in case E = L. 

Now put X = FI , A = L[X, Y]. Let F’ be any other irreducible factor ofF. 
Then A/(F’) = L’[ll, w h ere L’ is a finite field extension ofL. Since (X, F’)A = A, 
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the image X of X module (F’) is a unit. Hence X EL’ and there exists 
0 # f(X) E L[X] such thatf(X) = 0. ThenF’ dividesf(X) and hence F’ E L[Xj. 
If follows that FE L[X’J. 

1.2.2. COROLLARY. (i) deg,F = length, B. 

(ii) If ZE A such that F EL[Z], then ZEL[X] and 

L[Xj = L[Z] o deg,(F) = length, B 

-L[a = B, 

where z is the image of Z module (F). 

Proof. Clear. 

1.3. L~~ROTH LEMMA [ 1,2. lo]. Let L be ajeld and E 1 L a separable algebraic 
jield extension. If A is a normal domain such that 

L $ A C Et11 

and if L is algebraically closed in A (or equivalently ;f A* = L *), then 

A zzz LIll. 

Remark. The case when L = E can be generalized. See Section 3.2. 

2. CRITERIA FOR ONE-VARIABME POLYNOMIAL RINGS OVER A SUBRING 

2.1. Notation and de$nitions 

2.1.1. We will consider the following situation throughout this section: 

SCkCKCA. 

Here A is a domain, k, K are subrings, and S is a multiplicative set not 
containing 0. 

2.1.2. DEFINITION. K is said to be S-inert in A relative to k if the following 
conditions hold: 

(i) A n S-lK = K. 

(ii) For every height one prime ideal P of k containing some element of S 
we have 

(a) PA is prime, 

(b) qt(K) is algebraically closed in qt(A/PA), where if is the image of K 
in A/PA, 

(c) A/PA n qt(R) = a. 
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Remark. We will drop the reference to k whenever it is clear from the context. 

2.2. MODIFICATION LEMMA. Assume the setup in 2.1.1 and assume that K is 
S-inert in A. Let x1 ,..., x, , t E A such that 

PA E KM, i = l,..., r, 

where each p, is a product of elements in S which are prime elements in k. Then there 
exists a G K and b E S such that 

and 
t’ = (t - a)/b E A, 

xi E K[t’]. 

Proof. We call t’ E A a modification of t if t’ = (t - a)/b with a E K and 
b E S. Note that then K[t] C K[t’]. Al so a modification oft’ is clearly a modifica- 
tion of t and hence, by induction on r, we only need to prove the case T = 1. 

Write 
p,x, = f(t) = C a$j, ajEK. (1) 

Sincep, is a product of prime elements of k it suffices to show that by replacing 
t by some modification we can get a relation similar to (1) with a smaller number 
of prime factors for p, . 

Let p be a prime factor of p, . Since K is S- inert in A, the conditions of Defini- 
tion 2.1.2 hold. By Definition 2.1.2(i), if aj E pA for allj, then aj E pK and hence 
p can be cancelled from both sides of (1). Otherwise, if “-” denotes images in 
AlpA, we get that 

0 = c qfj 

is a nontrivial relation for t over K. By Definition 2.1.2(ii)(a), A/pA is a domain 
and from Definition 2.1.2(ii)(b) and (c) we get that i E qt(x) n A/pA = K. 
Hence for some a E K we get that t - a = pt’ for some t’ E A. 

Now 

p,x, = f(pt’ + a) = C a$” with a; E K. (2) 

Clearly ai E pA for j > 0 and since p,x, E pA, we have a: E pA as well. 
As we have seen above, this means that p can be cancelled from both sides of 

(2) and hence the result. 

2.3.1. THEOREM. Assume the setup in Section 2.1.1. Assume that A is finitely 
generated over K. Moreover, assume that 

(i) S-IA = (WK)rll, 

(ii) S is generated by prime elements of k, and 

(iii) K is S-inert in A. 

Then A = K[ll. 
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Proof. Find t E A such that S-lA = (S-lK)[t]. If x1 ,..., X, generate A over 
K, then by (2.2) we get a modification t’ of t such that t’ E A and xi E K[t’]. 
Then A = K[t’]. 

2.3.2. Remark. From the proofs of Lemma 2.2 and Theorem 2.3.1 it is 
clear that A = K[t’] precisely when (S-lK)[t’] = WA and t’ is residually 
transcendental modulo each prime p E S. Also, if WA = (S-l.K)[t] with t E A, 
then t’ is necessarily a modification of t, i.e., t’ = (t - a)/b with a E K and b E S. 

2.4. Let L be a field. As is well known, if F E L[X, Y] m LE21 is “generically 
a line,” i.e., if L(F)[X, Y] = L(F)[ll, then F is an “embedded line” or a variable, 
i.e., L[X, Y] = L[F][ll. 

The following result (Theorem 2.4.2) gives a proof of this as well as a slight. 
generalization of [4, Theorem 4.4.1. 

2.4.1. DEFINITION. Let L be a field and A an L-algebra. A is said to be 
“geometrically factorial” over L if E or. A is a UFD for any algebraic extension 
field E 3 L. 

2.4.2. THEOREM. Let L be a Feld, A a $nitely generated L-algebra, and F E A, 
Assume that 

(i) WA = L(F)“], whue S = L[Fl\{O}, 

(ii) L(F) n A = L[F], and 

(iii) A is geometrically factorial over L. 

Then A = L[F]W 

Proof. We check the conditions of Theorem 2.3.1 for S C k = K = L[F] C A, 
Of these conditions (i) and (ii) are obvious and we only need to show that K is 
S-inert in A. Thus we check the conditions (i) and (ii) of Definition 2.1.2. 
Condition (i) of Definition 2.1.2 is just the hypothesis (ii) above. 

Now let p E L[F] be irreducible. If p = ab with a, b E A, then a, b are units 
in S-IA = L(F)[ll and hence a, b EL(F) n A = L[F]. Thus p is irreducible in 
A and since A is a UFD by hypothesis (iii), pA is prime. Thus Definition 
2.1.2(ii)(a) holds. 

It is easy to see that the assumptions (i) and (ii) above hold for E C E or. A for 
any algebraic extension E of L. By the argument given above, if pi E E[F] is 
irreducible, then p,E & A is prime. 

Now let p EL[F~ be irreducible. Put E = L[F]/(p). Then p = plqp’ with 
p, , p’ E E[F], p, linear in F, q a power of the characteristic exponent of L and 
p, , p’ relatively prime. Let i? be an algebraic closure of E. Then 
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is a domain (pi is linear and hence irreducible in fT[FI). Hence E is algebraically 
closed in E & A/(p,). N ow suppose that EC E’ C A/pA, where E’ is a field. 
Then 

k 0 Al(Plq)) X k 0 Al(P’)) w @ $I A)/(P) IJ E $3 E’ = n Ei Y 
L L 

where each Ei is a local Artinian E-algebra. Hence E or. A/(p,) 3 E’ 3 E and 
hence E’ = E. This proves condition (ii)(b) of Definition 2.1.2. Definition 
2.1.2(ii)(c) is obvious since K = L[F] is aPID. Thus all conditions of Definition 
2.1.2 are checked, and the theorem is proved. 

2.4.3. Remark. Condition (ii) of Theorem 2.4.2 above is satisfied if A* = L*. 

2.44. Remark. A result closely related to Theorem 2.4.2 is proved in 
Section 3.2. 

2.5. The following result is most likely well known. We include a proof for the 
convenience of the reader. 

2.51. LEMMA. Let k be a locally factorial Krull domain. Let p, ,..., pp. E k. 
Then there exist a, , . . . . a, E k with (a, , . .., a,)k = k such that each pi is a product of 
prime elements in each kaj = (k localized at the multiplicative system generated 
bY aj). 

Proof. Since k is a Krull domain, pip, “*p, is contained in only finitely 
many height one primes of k. It suffices to show that given any height one prime 
ideal P of k and given any maximal ideal M of k, there exists a E k\M such that 
Pk, is principal. 

Now Pk, is principal since k, is factorial by hypothesis and there exists 
b E k such that PK, = bkiM . The divisor of b is of the form P + C Qi , where 
each Qi is a prime divisor (height one prime) such that Qzi @M. Hence there 
exists a E I-J Qi\M. Then the divisor of 6 on k, is Pk, so that Pk, is principal 
(generated by b). 

2.5.2. THEOREM. Let the setup be as in 2.1.1 and let A be finitely generated 
ovey K. Suppose that 

(i) k is a locally factorial Krull domain, 

(ii) S-lA = (FK)[ll, and 

(iii) K is S-inert in A. 

Then A is K-isomorphic to Sym,(Q) where Q is a J;nitely generated rank 1 
projective K-module such that Q is locally free on k. 
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Proof. Write S-lA = (S-rK)[t] with t E A. Let x1 ,..., x, be generators for A 
over k. Then there exist pi E S such that p,xi E K[t] for 1 < i < r. Let a, ,..., a, 
be as in Lemma 2.5.1. Clearly Kaj is S-inert in A,> , i = I,..., s. By Theorem 
2.3.1, there exist tj E AGj such that A, = K, .[tJ, j = l,..., s. Now 

6% >..-, u,)K = K and A = Sym,(Q) as staied. This is well known-see 
[4, Lemma 3.11 or [3, footnote]. Since Aaj = Sym,o,(Q @ Kaj) = Kaj , we get 
that Q OK K, is free. Since a, ,..., a, E k, Q is locally free on k. , 

2.5.3. COROLLARY. With the assumptions us in Theorem 2.5.2, zf we further 
assume that K = kLml for some m, then A is K-isomorphic to Sym,(Q’) ol, K, 
where Q’ is a rank one finitely generated projective module over k. 

Proof. The projective module Q in Theorem 2.5.2 is locally free on k, hence 
locally extended from k and hence is extended from k by [6, Theorem 11, i.e., 
Q = Q’ Ok K for some finitely generated projective k-module Q’ of rank one. 
Hence A - WdQ) - (Symk Q’) Ok K. 

2.5.4. Remark. Theorem 2.5.2 is a strengthened version of [S, Theorem 11. 
Obviously our conditions are tailor-made to make the rather direct method of 
proof go through. This method of modification of a generic choice of generator 
as in Lemma 2.2 is from [4, Theorem 4.4; 5, Lemma 1.31. Conditions (ii)(a) 
and (b) of Definition 2.1.2 roughly correspond to the requirement of geometric 
integrality of fibers in [5, Theorem l] (however we only need conditions for 
fibers over height one primes), whereas conditions 2.1.2(i) and (ii)(c) in essence 
replace the assumption of faithful flatness for A over k made in [5]. Certainly 
Theorem 2.1.3(i) and (ii)(c) are easy consequences of faithful flatness and are 
more convenient to check in our applications. Keeping track of the two subrings 
k C K and inverting only elements of k has technical advantages in treating 
“embedded plane” type problems ((Th eorem 2.6.2, for instance), and the 
corresponding stronger result does not need any more complicated proof. 

2.6.1. LEMMA. Let D be a domain and 

FE D[X, ,..., X,J w Drml 

such thatF(O,..., 0) = 0 and c(F) = (the idealgenerated by the coe#G-nts ofF) = D. 
Let E = qt D. 
Then E(F) n D[X, ,..., X,] = D[F]. 

Proof. Put R = E(F) n D[X, ,..., X,]. Then R C E(F) n E[X, ,.,., X,] = 
E[F]. Suppose G = a,, + u,F + . ..+u~~Rwithu.~E.SinceF(O,...,O)=O, 
a,, E D and 

(G - a,) = F(a, + ... + uI,Fs-l) E R. 

Choose b E D such that bu, = u; ED for i = l,..., s. Then 

F(a; + ... + aiF”-‘) = 0 mod(b). 
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Since c(F) = D, F is not a zero divisor modulo b and hence 

u; + a;F + ... + a,~FF”-l = 0 (mod(b)), 

so u; = ba, E bD and hence a, E D. It is now clear how to proceed by induction 
to show that ai E D for all i and hence G E D[F]. Thus R C D[F] and D[F] CR 
is obvious. Hence the result. 

Remark. c(F - F(O,..., 0)) = (1) if and only if F is transcendental modulo 
MD[X, ,..., X,] for each maximal ideal M of D. 

2.6.2. THEOREM. Let k be a locally factorial Krull domain with quotient$eldL. 
Let FE A = kr21. 

Assume that 

(i) A/FA NN k[ll, 

(ii) char k = 0 or L(F) Ok A = L(F)W 

Then A = k[F]N 

Proof. Write A = k[X, Y]. We claim that 

L @ A = L[X, Y] = L[F]N 

If char k = 0, this follows by Theorem 1.1. If L(F) al, A m L(F)[ll, then (1) 
follows by applying Theorem 2.4.2 to L CL gI, A. 

From (1) we get that condition (ii) of Theorem 2.5.2 holds for 

S = k - (0) C k C K = k[F] CA. 

We proceed to check the remaining conditions of Theorem 2.5.2. 
Let P be a prime ideal of k. Let ‘I-” denote images modulo PA and put 

1 = qt(k/P). 
Then 

A = (kjP)L21, (2) 

A/FA = (k/P)[ll, (3) 

(4) 

Since A/FA = k[ll, there exist a, b E k such that F(a, b) = 0, and hence 
replacing X, Y by X + a, Y + b we may assume thatF(0, 0) = 0. 

By (2), PA is prime. By (3), P # 0 and c(F) q P. Since this holds for all 

481/57/I-11 
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prime ideals P we get c(F) = (1) and by (2) and Lemma 2.6.1 we have 
Z(F) n ii = (k/P)[Fj. Let l b e an algebraic closure of 1. Then 

is a domain (because of (4)) and hence qt z = Z(F) is algebraically closed in 
qt 2. 

We have now established that K is S-inert in A. By Theorem 2.5.2 and 
Corollary 2.5.3 we get 

A - SY~TJQ) 0 WI 
k 

(by a K[Fj-isomorphism) where Q is a finitely generated projective K-module. 
However Symk(Q) m AIFA m Ml] is free and hence A = k[F, Gj for some 
GEA. 

3. APPLICATIONS TO THE CANCELLATION AND EMBEDDED PLANE PROBLEM 

3.1. THEOREM. Let A be an afine domain over a jield of characteristic p. 
Suppose A C L[x, y] M LL21 such that L[x] n A @ L[xp]. 

If A is geometrically factorial, then 

L[x] n A = L[u] for some u E A, (3.1.1) 

A m L[u][ll or A = L[u]. (3.1.2) 

Proof. We have L CA n L[x] CL[x], A n L[x] is clearly normal and L is 
relatively algebraically closed in L[x] and hence in A n L[x]. 

Therefore Lemma 1.3 gives that A n L[x] -Dl. This proves (3.1.1). 
Now we have 

W) C A 0 L(u) C L[x, rl 0 L(u) = Wbl. 
L[ul L[ul 

We apply Lemma 1.3 again by checking conditions as follows: 

Any element of A aLrUl L(u) which is algebraic over L(u) belongs to L(x) and 
hence to 

(A n L[x]) @ L(U) = L(U). 
L[ul 

A OLrUl L(u) is normal, being a localization of A. Thus Lemma 1.3 gives 
A @L[u~L(u) = L(u) and clearly A = L[u] or A @L[u~L(u) = L(u)W 

Then L[u] C A n L(u) C A n L(x) = A n L[x] = L[u]. Hence Theorem 2.4.2 
is applicable with u replacing F. Thus A = L[u]N 
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Remark. Note that geometric factoriality is used only in the last step of 
applying Theorem 2.4.2. 

3.2. The following is a generalization of the special case u = x of Theorem 3.1. 

THEOREM. Let k C A C k[y] PW k[ll be factorial domains. Then k = A OY 
A = kP1. 

Proof. Assume that A # k. Then there exists h(y) E A such that 

(i) h(y) has the least positive degree among the elements of A, 

(ii) h(0) = 0, and 

(iii) h(y) is irreducible in A. 

Let E = qt k. Then EC A Or EC E[y] and A Or E is factorial. Hence by 
the Ltiroth lemma (Lemma 1.3) we get that A Ok E M EC11 and from (i) it 
follows that 

A@E=E[h]. 
k 

(1) 

Then for every a E A we can find b, b, ,..., b, E k for some n such that 

ab=b,+b,h+*..+b,h”. (2) 

By induction on n we will prove that bi E bk for all i and hence b can be 
cancelled from both sides, which shows a E k[h]. Then A = k[h] is obvious. 

Now assume the result for all values of n < m and put n = m. 
Comparing the constant terms with respect to y on both sides of (2) and 

using that h(0) = 0, we get that 

Thus 

b, = ba, for some a,, E k. (3) 

(a - a,)b = h[b, + ... + b,h+l]. 

Since b E k and h $ k is irreducible in A we get that 

a - a, = ha, , a,EA. 

Moreover, 

a,b = b, + . . . + b&n-l 

and hence by the induction hypothesis bi E bk for i > 1. From (3) b, E bk and 
hence the result. 

3.3. Remark. In the above theorem, we do not resort to using the old 
theorem (Theorem 2.3) since it becomes difficult to check the inertness condi- 
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tions, in particular Definition 2.1.2(ii)(b). However, just the fact that A is 
contained in a polynomial ring k[y] over k helps out in producing, in fact, a 
simpler proof. 

Unfortunately we do not know how to generalize the above situation to 
K CA C R[y] m R[rl, where R is, say, integral over K and UFD; this, if done, 
would be a full generalization of Lemma 3.1. 

3.4. COROLLARY. If k C A C krml are factorial domains where m is an integer, 
and if A has transcendence degree at most one over k, then A = k or A = k[ll. 

Proof. We only need to show that A C k[y] M kc11 for some y and then 
apply Section 3.2. 

We proceed by induction on m, the result being trivial for m < 1. 
Write krrnl = k[X, ,..., X,]. 
Let E = qt k, B = A ol, E. Then it is well known that we can write k@l = 

W >..., Yml with (Y,J E[Y, ,..., Y,] n B = (0). 
It follows that (Y,) k[Y, ,..., YJ n A = (0) and hence 

k C A C k[Y, ,..., Y,]/(Y,) m k[m-ll. 

Now we are finished by induction. 

3.5. Notation. Let L be a field and A an affine domain over L. Let A[T] +W 
AL11 and F E A[T]\A. Let B = A[T]/(F). Th en we can, after suitable identifica- 
tion, write 

A C A[t] = B, 

where t is the image of T module (F). We assume that A[T] m Lf31 and B w LF21. 

3.6. THEOREM. Let the notation be as in Section 3.5 above. Let x, y E B such 
that B = L[x, y] and 

L(x) n A ctL[xp] 

where p is the characteristic of L. 
Then we have: 

(3.6.1) If A[T] = L[F][21, then A m Lf21. 

Conversely : 

(3.6.2) If p = 0 and A m L[21, then A[T] = L[F]W 

Proof. In view of Theorem 3.1, to prove (3.6.1) we only need to show that A 
is geometrically factorial. But if E is any algebraic extension of L, then 

( 1 
A @ E [T] = EL31 

L 

and hence A & E is factorial. 
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Now we prove (3.6.2). In view of Theorem 3.1 we can write A = L[u, v], 
where L[u] = A ~Qx]. 

Now L(U) CL(u)[w, T]/(F) = L(x)[y]. We apply Lemma 1.2.1 with L and B 
replaced by L(u) and L(x), respectively, and consequently find Hi E A[T] such 
that 

L(u)[v, T] = L(u)[H&‘l (1) 

and moreover F E L(u)[Hi]. 
Thus we can write 

gF = f gi,“, 
0 

(2) 

where g, gl ,..., g, ELM and g, go ,..., g, have no common factor. 
Now apply the modification lemma (Lemma 2.2) with S = L[u]\{O}, K = K = 

L[u] and A = L[u, a, T]. Since the conditions are obviously satisfied we get 
(I, b E L[u] and HE L[u, V, T] such that 

and moreover 

From (1) and (2) we get that 

bH+a=H, (2) 

F EL[~][H]. (3) 

L(u)[v, T] = L(u)[H][‘l. 

Next we want to prove that L[u, v, T] = L[u, H][ll. 
We apply Theorem 2.3.1 with S = L[u]\{O), k = L[u] C K = L[u, H] and 

A = L[u, v, 7’1. In view of (4) it is sufficient to establish the following: 

Let 4 EL[u] be prime. Moreover let E = L[u]/(q) and denote by fi the image 
of H in E[v, T] w L[u, ZI, T]/(q). 

Then 

E[v, T] = E[f?][ll. (5) 

In fact, Theorem 2.3.1(i) is nothing but (4) and Theorem 2.3.l(ii) is obvious. 
Also H is transcendental mod 4 for each prime Q in L[u] and L(u, H) n 
L[u, U, T] = L[u, H] follows from Lemma 2.6.1. Hence Lemma 1.2.1(i) holds. 
Since Lemma 1.2.l(ii)(a) is obvious and Lemma 1.2.l(ii)(b)(c) are immediate 
consequences of (5), we have established Theorem 2.3.l(iii). 

To prove (5) we first 

CLAIM. The image of L[u, H] module (F) gene-rates L[x], 
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Assume the validity of this claim for the moment. Denote by F’ the image of F 
in E[v, T] and by f, 21, k the images of x, u, H in E[v, T]/(F’). Then E[%j = 
L[ZJ = L[zZ, ir] = E[if]. Moreover 

JW, TIP”) - J%Y~/(c-I) = ~Wl[l’ 

and hence E[v, T] = E[ii][il follows from Corollary 1.2.2(ii) and (3). 
It only remains to prove the claim. 
Let I‘-” denote images modulo (F). Then G = u, REL[x] and from 

Corollary 1.2.2, (3), and (4) we deduce that 

L(ff)[R] = L(u) @ L[x] = L(x). 
L[ul 

Thus qtL[u, R] = L(x) and t o establish the claim we only need to prove that 
L[u, a] is normal. 

We use the Jacobian criterion. Since 

L[u, v, T]/(F) M U21 

is regular, we get that -- -- -- 
aF aH aF aH aF aH ~+Hau’m~‘aHar 

generate the unit ideal in L[u, v, T]/(F) =L[x, r]. Now %/au and %/aH E 
L[u, f?] CL[x]. Hence 

( 
aF - , g) L[x] = L[x] au 

- 
and since F[x]/L[u, f7] is integral we get that (z/au, aF/aH)L[u, m =L[u, ff]. 
ThenL[u, m is regular and hence normal, and the claim is established. 

Now we have shown that 

L[u, v, T] = L[u, Hj[‘l, 

and in the course of the proof we have shown that 

L[u, H)/(F) = L[x] = LJI. 

Hence by the epimorphism theorem of Abhyankar and Moh (Theorem 1.1) 
we get that L[u, H] = L[F]fll. 

Thus 

L[u, v, T] = L[u, H][ll = L[F]W. 
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3.7. COROLLARY (a case of the cancellation problem). Let A be a domain over 
a UFD k. Let 

A[T] M A[‘] = k[X, Y, Z] m kW 

Assume that there exists a E A such that 

a = f(X) + -WX, Y, z), 

where f (X) E k[X] and h(X, Y, 2) E k[X, Y, 21. Moreover assume that either 

(i) k = L, a jeld, and f (X) is separable or 

(ii) 4f WI = &Cl. 
Then A M kL21. 

Proof. Note that ALlI M kL31 implies that A is an alKne factorial k-algebra. 
Note that we may assume Z$ A. In fact, if 2 E A, then we may assume that, 
say, Y # A and put a = 2. Then a = Z + Y .O and we have the required 
situation for (X, Y’, 2) = (2, X, Y). 

Now in case (i), we take 2 = F and the proof is finished by (3.6.1). 
In case (ii), we identify A as a subring of A[T]/(Z) = k[X, Y] = A[t], where t 

is the image of T modulo (2). Then k[x] CA C A[t] = k[X, Y] and A is 
clearly factorial. The proof is finished by taking k[x] in place of k in Section 3.2. 

3.8.1. LEMMA. Let the notation be as in Section 3.5 and assut~~ that A is 
factorial. Let F be written as 

F = i aiTi with a,EA. 
II 

Then the following are equivalent: 

(i) B n qt A3 A. 

(ii) a, ,..., a,, have a nonunit common factor a E A. 

Proof. Let b/a = Cr biTi E B n qt A, where a, b E A have no common 
factor and a $ A*. Then 

-b=F 

for some G E A[T]. Hence F 3 -b modulo (a’) for any irreducible factor a’ of a, 
that is, a’ divides a, ,..., a,, and not a, . 

Conversely, if u divides a, ,..., a,, , then no factor of a divides a, since F is 
irreducible and 

%T+ . . . +?Tn= -2EBnqtA,--$A. 
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3.8.2. A ca.se of the cancellation and the embedded plane problem. Let the 
notation be as in Section 3.5 and assume that the equivalent conditions of Lemma 
3.8.1 are satisfied. 

Also assume that L has characteristic zero. Then 

A[T] = L[F]@J 

if and only if A w L[21 and A[TJ/(F) = B M LW 

Proof. We check that the conditions of Theorem 3.6 are satisfied. Clearly, 
if A[T] = L[F][21, then B w LL21 and A is an affine factorialL-algebra. 

Now A[TJ/(a,F) = A[T]/(a, a,) = A/(a, a,)[T] SW R[ll, where R is a zero- 
dimensional L-algebra. On the other hand A[T]/(a, F) M B/(a) M L[“l/(a). From 
the parallel lines lemma (Lemma 1.2) we deduce that B = L[x, y] with a E L[x] 
for suitable x,y. Hence the hypothesis of Theorem 3.6 is satisfied and (3.6.1) 
and (3.6.2) give the desired conclusion. 
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