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The Maximum Order of an Element of a Finite Symmetric Group

WILLIAM MILLER, LEMOYNE COLLEGE

WILLIAM MILLER: I received my doctorate in 1979 from the University of
Michigan for work done under the direction of H. L. Montgomery.

Preface. The question,”“How large can the order of permutation on n elements
be?” is reclusive, eccentric, and charming. It is of common genealogy, the natural
offspring of rudimentary concepts from group theory. Yet it shyly declines to
appear in modern algebra texts except, occasionally, in the inconspicuous special
case where n is small. (See, for example, [2], p. 322; [5], p. 83; [6], p. 158.)

An amusing quirk of the question is its penchant for disguise. It enjoys
masquerading in equivalent forms, like the following one.

A deck of n cards is shuffled repeatedly, each shuffle identical to the others.
What is the maximum number of shuffles that can be required to restore the deck to
its original order? (Here, the term “shuffle” indicates all possible rearrangements of
the deck, even those that the best stage magician could not achieve with normal
techniques.)

Other known aliases are described in the introduction to [10]. (The works cited
there are [16], [18], and [19].)

Idiosyncrasies aside, the question possesses a fascinating talent—the uncanny
ability to weave seemingly unrelated ideas into a tightly knit and intriguingly artistic
fabric. This talent is too delightful for us to leave the question in its present state of
obscurity.

1. Introduction. For convenience, let us denote the maximum order of a permu-
tation on n elements by G(n). The goal of this paper is to summarize what is known
about G(n) and then present a proof of one of the premier results, namely, that

log G(n) ~ nlogn. (1)

(Throughout, “log” denotes the natural logarithm; and, for functions f and g, we
write f(x) ~ g(x) and say “f is asymptotic to g” if lim,_, f(x)/g(x) = 1.) For
some perspective on this result, recall that the symmetric group on » elements has
order n!, and that log n! is asymptotic to n - log n. In this sense, we can regard (1)
as quantifying the well-known fact that a symmetric group on more than 2 elements
is not cyclic.

The proof of (1) has an aesthetic quality that greatly enhances its appeal: it
applies a deep, number-theoretic result to a question from group theory, yet in such
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498 WILLIAM MILLER [June-July

a way that a general reader can appreciate the details. The deep result from number
theory is the Prime Number Theorem, which states that if #(x) denotes the number
of primes not exceeding x, then #(x) ~ x/log x. (See [4] for a thorough history of
this famous result; a proof is given in [1].) ;

The remainder of the paper is organized as follows. In Section 2, we review what
is known about G(n). Next (Section 3), we discuss some basic notions concerning
G(n). Beginning in Section 4, we turn to proving (1). The first step is to make a
connection between G(n) and the prime numbers. This connection leads us, in a
natural way, to consider a function F(n) that approximates G(») but is simpler to
handle. We then show, in Sections 5 and 6, respectively, that log G(n) ~ log F(n)
and that log F(n) ~ y/nlogn, from which (1) is evident. (The relation ~ is easily
seen to be transitive.) Finally, we offer some concluding remarks in Section 7. The
arguments of Sections 4 and 5 employ a variety of simple ideas. It is not until
Section 6 that we must invoke the Prime Number Theorem.

2. Historical Notes. The papers dealing with G(n) are quite sparse. The first
significant information about G(n) was apparently obtained by E. Landau (see [7]
and [8], pp. 222-229), who proved (1) in 1903. Thirty-six years later, S. Shah ([15])
refined (1) by providing an estimate for log G(n) — y/nlogn|. In 1980, M. Szalay
([17]) sharpened Shah’s estimate somewhat and also gave an estimate for the
maximum order of an element of a symmetric semigroup. The estimates of both
Shah and Szalay contain noneffective constants. Quite recently, J. Massias ([10])
derived an explicit upper bound for G(n) and determined the value of n at which
(log G(n) — y/nlog n) attains its maximum.

A few years ago, M. Nathanson ([11]) offered a short, elementary proof showing
that G(n) grows more rapidly than any power of n, (a result that is plainly weaker
than (1)).

A paper ([12])) of J. Nicolas, which appeared in 1969, exposes a number of
interesting properties of G(n). A particularly striking result of that paper is that
there are arbitrarily long strings of consecutive integers for which G(n) is stationary.
In a second paper ([13]), contemporary with the first, Nicolas described a computer
program for calculating G(n).

That very few permutations on »n elements have orders as large as G(n) is one
result of a 1965 paper of P. Erdos and P. Turan. (See [3].) In fact, “most” (in a sense
that Erdds and Turdn made precise) permutations on »n elements have an order
whose logarithm is about (log?n)/2.

3. Computing G(rn) When n is Given. For a small value of n, it is a routine
exercise to calculate G(n). One merely recalls that every finite permutation can be
decomposed (uniquely, up to the order in which the factors appear) as a product of
disjoint cycles, and that the order of a permutation is the least common multiple of
the lengths of its disjoint cycles (see [9], pp. 93-94). Then, using this, one enu-
merates the possible orders of a permutation on n elements. More explicitly, one
considers all distinct representations of »n as a sum of positive integers and, for each
representation, computes the least common multiple of the integers in the represen-
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tation. The largest number thus computed is G(n), and the integers in any
representation corresponding to G(n) are the cycle lengths of a permutation on n
elements having order G(n). This tedious method can be streamlined, as in [13]; but
calculating a particular value of G(n) involves substantial trial and error.

The table below displays the values of G(n) for n < 20 and gives the correspond-
ing cycle structures of permutations (on »n elements) with order G(n).

n  G(n) cycle lengths n  G(n) cycle lengths

2 2 2 11 30 1,2,3,50r5,6

3 3 3 12 60 3,4,5

4 4 4 13 60 1,3,4,5

5 6 2,3 14 84  3,4,7

6 6 1,2,3 0r6 15 105 3,57

7 12 3,4 16 140 4,57

8 15 3,5 17 210  2,3,5,7

9 20 4,5 18 210 1,2,3,5,70r5,6,7
10 30 2,3,5 19 420  3,4,5,7

The unruly behavior of G(n) is apparent even in this brief table.

4. The Prime Connection. Let us consider the question of whether, for a given
positive integer m, there is a permutation on »n elements having order m. As a
specific example, we ask, “Is there a permutation on 52 elements having order
51,4807 Now the prime factorization of 51,480 is 23 - 32- 5 - 11 - 13. Therefore,
any permutation with exactly five nontrivial (disjoint) cycles whose lengths are
8,9,5,11,13 has order 51,480. Moreover, it is possible to construct such a permuta-
tion whenever there are at least 8 + 9 + 5 + 11 + 13 (= 46) distinct elements
available for permuting. We see, then, that there is a permutation on 52 elements
with order 51,480. (This means, by the way, that there are shuffles that have to be
performed exactly 51,480 times to restore a standard deck of 52 cards to its original
order.) ,

In general, if we seek a permutation of order m, then we let the prime
factorization of m be I1;_,q%. Whenever ¥5_,q;» < n we form a permutation that
has s + (n — Xj_,q/) disjoint cycles, the first s of lengths gf,..., ¢;*, and the
remaining ones of length 1. This permutation is a permutation on n elements (since
the cycle lengths sum to »n) and has order m (since the least common multiple of the
cycle lengths is just their product, which is m). Hence, if Xj_g% < n (where
m = I1;_,qf), then there is a permutation on n elements having order m. We show
in Corollary 1 below that the converse of this statement also holds.

As the preceeding discussion suggests, it is handy to have an abbreviation for the
sum associated with the prime factorization of m.

DEFII;IITION. The function S is defined on the positive integers by S(1) = 1 and
S(m) = X5_1qp for m > 1, where II;_,q;” is the prime factorization of m.

We have described a procedure for constructing a permutation of given order m.
Our procedure requires that we have at least S(m) distinct elements available for
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permuting. We want to know that our procedure is an efficient one, that is, that no
other procedure can produce a permutation of order m by using fewer than S(m)
distinct elements. The next lemma assures us on this point. In reading the lemma, it
is helpful (though not essential) to think of the integers a4, ..., a, as being the cycle
lengths of a permutation of order m.

LEMMA 1. Let ay,..., a, be positive integers and let m be their least common
multiple. Then S(m) < ¥*_,a,.

Proof. We argue that there are no counterexamples to the lemma. Suppose,
instead, that the sequence of positive integers a,,..., a, forms a counterexample,
and further suppose that the sum of a4, ..., a, is minimal (among counterexamples).
After making a few reductions, we shall arrive at an obvious contradiction.

We first note that all the terms of a,,..., a, are greater than 1; if not we could
delete one of the terms equal to 1 to get a new sequence that would still refute the
lemma, but would have a smaller sum than a;,..., a,.

We next contend that each term of a,..., a, is a (positive, integral) power of a
prime. Otherwise, there would be a term, say, a,, that could be written as a product
of two relatively prime integers, say ¢ and d, both greater than 1. Assuming d to be
the larger of ¢ and d, we would have that

c+d<c+d(c—1)=cd+(c—d)<cd.
Therefore, deleting a; from the original sequence and inserting ¢ and d would yield
a new sequence with smaller sum, yet with the same least common multiple as
ay, ..., a,. This would violate the minimality property of ay,..., a,.

Finally, we observe that the terms of ay,..., a, must be powers of distinct
primes. For, if two of the terms were powers of the same prime, then deleting the
term with the smaller power (or deleting either term if the powers were equal) would
again yield a new sequence with smaller sum, yet the same least common multiple as
Alseees Ay

But if ay,..., a, are all powers of distinct primes, then the sequence is NOT a
counterexample to the lemma. This is because the least common multiple of
ay, ..., a, (which is m) is just their product; moreover, their product is the prime
factorization of m, whence S(m) equals the sum of a, ..., a,. Since the lemma has
no counterexample of minimal sum, it must be true.

COROLLARY 1. There is a permutation on n elements having order m if and only if
S(m) < n.

Proof. If S(m) < n, then the procedure outlined at the beginning of this section
yields a permutation on n elements having order m. Conversely, let a,,..., a, be
the cycle lengths of a permutation on n elements having order m. Then the sum of
the cycle lengths is n and their least common multiple is m. Hence, S(m) < n by
Lemma 1.

If we study the table showing values of G(n) for n < 20, then we may well
anticipate the next corollary.
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COROLLARY 2. Among the permutations on n elements having order G(n), there is
at least one whose nontrivial cycles have lengths that are powers of distinct primes.

Proof. Corollary 1 gives that S(G(n)) < n. Therefore, the construction described
at the beginning of this section supplies a permutation of order G(n) with the
prescribed type of cycle lengths.

We comment that Corollary 2 can be strengthened considerably. It can be shown
that if 4 is a cycle length of a permutation (on n elements) with order G(n), then
either 4 is a power of a prime not dividing any other cycle length, or else 4 = 6.
Furthermore, the latter possibility is excluded for all sufficiently large n.

Our final corollary gives a convenient characterization of G(n).

COROLLARY 3. We have that G(n) = maxg,, . M.

Proof. As in the previous proof, S(G(n)) < n, so that G(n) cannot exceed the
maximum of the m taken over S(m) < n. On the other hand, by Corollary 1, if
S(m) < n, then there is a permutation on n elements having order m. The
definition of G(n) thus implies that m < G(n) whenever S(m) < n.

5. The Relationship Between F(n) and G(n). The foregoing section tells us that
to calculate G(n), we should select powers of distinct primes in such a way that
their sum does not exceed n and their product is maximal (subject to the constraint
on the sum). One obvious way to select prime powers satisfying the constraint is to
choose 2,3,5,7,11,13, ..., continuing until the sum of the primes chosen is as large
as possible without exceeding n. For instance, if n = 52, we select 2,3,5,7,11, and
13. The sum of these primes is 41. We cannot include the next prime, 17, for then
the sum would exceed 52. The product of the selected primes is 30,030. Let us call
this product F(52). It is plain that F(52) < G(52) because, in our selection process,
we can choose 17 instead of 7, or 4 instead of 2, or 9 instead of 3 without violating
the constraint. However, since it can be checked that G(52) = 180,180 = 2% - 325
-7 -11 - 13, we see that F(52) and G(52) have some common features. In particu-
lar, if we compare G(52) and F(52) on a logarithmic scale (a sensible one to use in
dealing with products), we discover that the ratio between log G(52) and log F(52) is
only about 1.2.

It is easy to use our selection process for arbitrary values of n. We select primes
in increasing order until we reach a prime, call it P, such that the sum of all primes
less than P is no greater than n, but such that the sum of all primes up to and
including P is greater than n. Then we let F(n) be the product of the primes less
than P. As already announced, we discover that log F(n) is asymptotic to log G(n).

THEOREM 1. Let P be the largest prime with the property that the sum of the primes
less than P does not exceed n, and let F(n) be the product of the primes less than P.
Then log F(n) ~ log G(n).

We require two lemmas for the proof of Theorem 1. To understand the purposes
of the lemmas, first recall that F(n) < G(n). Hence we need only find a suitable
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upper bound for G(n) in terms of F(n). If we compare the prime factorizations of
F(52) and G(52) given above, we notice immediately that the same primes divide
both numbers. The difference is that the smaller primes appear with higher powers
in G(n). Thus, when n = 52, the product of the primes dividing G(n) equals F(n).
In general, the product of the primes dividing G(») need not equal F(n). However,
Lemma 2 below guarantees that the product is never much larger than F(n).

In light of Lemma 2, we see that the only way for G(n) to be much larger than
F(n) is for the prime factorization of G(n) to include primes raised to powers
greater than 1. Lemma 3 limits the extent to which this can happen. In fact, Lemma
3 corroborates what is suggested by looking at G(52)—that only the smaller primes
can appear to higher powers in the factorization of G(n), and that the contribution
of such higher-power primes is fairly modest.

LEMMA 2 (Shah). Let q; < --- < g, be all the primes dividing G(n), and let P
and F(n) be as in Theorem 1. Then

N
> logg; <2+ log F(n) + log P.
j=1

Proof. For future reference, we observe that (log x)/x is a decreasing function
for x = 3 (because its derivative is negative there). Hence, if 3 < a < b, then
(a/log a)(logb) < b and a < (b/log b)(log a). We also note that P is at least 3
unless n = 1, in which case the conclusion of the lemma is clearly true.

Now let gy,...,q,_; be the primes not exceeding P that divide G(n), and let
P1---» P, be the odd primes not exceeding P that do not divide G(n). Thus, the list
P1s-++» P 415 ---» 4,—1 cONtains every prime not exceeding P exactly once, except
that 2 might be omitted. Since

Y 4,<56Gm) sn< ¥ o,

Jj=1 PP

we find, upon canceling common terms in the above inequality, that
s r
Yq;s2+ X, )
j=t i=1

Moreover, because 3 < P < q; for t <j < s and because 3<p, <P (1 i <),
our initial observation implies that (P/log P)(logg;) < ¢, and that p, <
(P/log P)(log p;). From this and (2) we infer that

s r ’ .
Y logq; < 2(log P/P) + Y logp; <2+ } logp;.
=t i=1 i=1
Adding the terms logg; for 1 <j <t —1 to both sides of this inequality and
recalling that p,,..., p,,qy,-.-,4,_; is just a permuted list of the primes not
exceeding P (except that 2 might be omitted), we get the conclusion of the lemma.

LeMMA 3. Let q be a prime, let e be an integer greater than 1, and let P be as in
Theorem 1. If q° divides G(n), then q° < 2P and q < V2P.
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Proof. Since e > 1, the second assertion is an easy corollary of the first. To prove
the first assertion, let Q be the smallest prime not dividing G(n). Now the primes
less than Q all divide G(n); hence, their sum is at most S(G(n)), which is at most
n. On the other hand the sum of the primes not exceeding P is greater than n. It
follows that Q < P. Therefore, it suffices to show that g¢ < 2Q.

Suppose, to the contrary, that ¢¢> 2Q, and let N be the positive integer
satisfying ¢ < QN < ¢Q. (Equality is impossible in the last inequality because g
divides G(n) while Q does not.) We put m = (Q"/q)G(n). Then m > G(n) and

S(m) = S(G(n)) + (Q" = g+ ¢°7),
We claim that the last quantity in parentheses is negative. If ¢ < Q, this is true
because (by definition) N = 1 and (since g¢ is supposed greater than 2Q)

—q°+4q7 < —q/2< -(20)/2= - Q.
If ¢ > Q, it is true because (since QV < ¢Q and e > 1),

QN —gq°+ ¢ <q0—4q(g-1) <90 - q(Q) =0.
Hence, S(m) < S(G(n)) < n. Since m > G(n), this contradicts Corollary 3, thereby
establishing the lemma.

The proof of Theorem 1 is now straightforward, save for one detail concerning
the relative sizes of F(n) and P.

Proof of Theorem 1. Let T15_,q5 be the prime factorization of G(n). We view
log G(n) as the sum of the terms log g;’ and split this sum into two subsums, the
first consisting of the terms for which e; = 1, the second consisting of the terms for
which e; > 1. By Lemma 2, the first subsum is at most 2 + log F(n) + log P; by
Lemma 3, each term of the second subsum is at most log2 P and there are at most
V2P terms. Combining this information with the fact that F(n) < G(n), we deduce

that
log F(n) <logG(n) <2 + log F(n) + log P + V2P (log2P).

In the next section, we shall see that there is a positive constant ¢ such that, for
all n > 1,log F(n) > cP. Accepting this fact for the present, we obtain Theorem 1
upon dividing the displayed inequality by log F(n) and letting n approach infinity.
(Note that, from its definition, P clearly approaches infinity with n.)

6. The Size of F(n). The goal of this section is to prove that log F(n) is
asymptotic to y/nlogn. As an instructive prelude to the proof, let us reason

heuristically. To compute log F(n), we first determine the prime P that satisfies the
double inequality

Zp(= z P)é"_< X »p
p<P p<P-1 PP
(Here and below, p denotes a generic prime.) Then we calculate

log( Il p) = Y logp.

p<P p<P



504 WILLIAM MILLER [June-July

Suppose that we treat P as an independent variable and regard both the sum of
p(p £ P) and the sum of log p(p < P) as functions of P. To emphasize this
approach, let us replace P by x and put

A(x)= X p, 0(x)= X logp.
psx psx
Now A(x) and 8(x) are step functions whose values are tedious to determine. Let
us ignore this for the present and argue as follows. Since A(P — 1) £ n < A(P) and
log F(n) = 8(P — 1), we ought to get a good approximation to log F(r) by solving
the equation A(x) = n for x and plugging the solution into 6(x).

For this program to succeed, we must be able to approximate 4(x) and 8(x) by
appropriate functions. Fortunately, thanks to the Prime Number Theorem, we can!
The following two consequences (equivalent forms, actually) of the Prime Number
Theorem are just what we need.

A(x) ~ x*/(2log x) ©)
6(x) ~x (4)

According to our heuristic scheme, then, log F(n) is approximately equal to the
value of x that solves the equation x2/(2log x) = n. Moreover, as is easily verified,
x = y/nlogn is “almost” a solution to this equation. Thus we suspect that log F(n)
~ nlogn.

Before we make this plausibility argument rigorous, let us add a few comments
about (3) and (4). The derivations of (3) and (4) are applications of a standard
technique based on integration by parts. For those unfamiliar with this useful
technique, we sketch the derivation of (4). (Recall below that #(x) denotes the
number of primes not exceeding x and that the Prime Number Theorem states that
7(x) ~ x/(log x).)

From the definitions of #(x), §(x), and the Stieltjes Integral,

8(x) = flx(logt) d(w(1)).
Integration by parts yields that
8(x) = (x)(log x) — _/:(w(t))/tdt.

The last integrand is (by the Prime Number Theorem) no more than a constant
multiple of 1/(log ¢). Moreover, the integral of 1/(log ¢) from 2 to x is bounded by
a constant multiple of x/(log x), as can be seen by splitting the range of integration
at Vx. Hence, we obtain (4) if we divide the last equation by x, let x approach
infinity, and invoke the Prime Number Theorem.

It is evident from (4) that there is a positive constant ¢’ such that §(x) > ¢’x for
all x > 2. Furthermore, by the definitions of F(n) and 6(x), we have that
log F(n) = 6(P — 1). Thus, the inequality log F(n) > cP, quoted in the proof of
Theorem 1, follows from the Prime Number Theorem. However, this inequality also
follows from much weaker statements about the distribution of primes. Relatively
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simple arguments (see [14], p. 217ff), dating to Chebyshef, show that #(x)(log x)/x
is bounded above and below by positive constants; and the technique illustrated in
the foregoing paragraph yields corresponding upper and lower bounds for 6(x).
Theorem 1 is therefore independent of deep facts about prime distribution.

To verify that log F(n) ~ /nlog n, we first note that since log F(n) = (P — 1)
and since (with P regarded as a function of n) P ~ P — 1, (4) implies that
log F(n) ~ P. Thus, it suffices to show that P ~ \/nlogn.

Now A(P — 1) < n < A(P) by the definitions of A(x) and P. Since it is
immediate from (3) that A(x — 1) ~ A(x), we infer that

P%/(2log P) ~ n. (5)

If P is not asymptotic to /n log n, then there is a positive number ¢e — & such
that, for infinitely many values of n, one of the following two inequalities holds:

P<(1—-e)/nlogn P2 (1+¢)/nlogn. (6)

Because x?/(log x) is an increasing function for x > Ve, the first inequality of (6)
implies that

P2/(2nlog P) < (1 — €)*(log n) /(log n + loglog n + 2log(1 — «)).

As n approaches infinity, the right side of the last inequality approaches (1 — ¢)?,
while (by (5)) the left side approaches 1. Hence, the first inequality of (6) cannot
hold for infinitely many »n. Similarly, the second cannot either; and we conclude
that P ~ /nlogn. As explained above, this establishes that log F(n) ~ y/nlogn.

7. Concluding Remarks. Landau’s proof of (1) contains less combinatorial analy-
sis and more frequent use of the Prime Number Theorem than does ours. Our proof
is not substantially shorter or simpler than Landau’s, but it does furnish a more
complete survey of the methods that have been successful in studying G(n). It also
illustrates how a weaker version of (1), with log G(n) bounded above and below by
constant multiples of /n logn, can be derived by using Chebyshev’s estimates for
a(x) rather than the more sophisticated Prime Number Theorem.

The kind of combinatorial analysis typified by our proof of Lemma 3 can be
employed very effectively to explore the prime factorization of G(n). (See [12] for a
vivid demonstration of this.) In particular, one can deduce fairly readily that if
I[17_,g7 is the prime factorization of G(n) and if g, < q;, then ¢; > ¢; — 1. With
more work, one can show that if Q is the largest prime factor of G(n), then “most”
(in various senses) primes less than Q divide G(n). This leads to an asymptotic
estimate for the number of prime factors of G(n).

The refinements of (1) mentioned in Section 2 are essentially refinements of
estimates for F(n). With slightly more care, Theorem 1 can be sharpened to give an
estimate for [log G(n) — log F(n)| that is commensurate with the estimate for
log F(n) — y/nlog n| that follows from the renowned Riemann Hypothesis. Thus,
Theorem 1 is adequate to handle any likely improvements in estimates for F(n).

In the preface, we claimed that this paper’s seminal question has a remarkable
talent for linking apparently disparate ideas. Can anyone who has seen a question
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about card-shuffling linked, in a natural way, to the question (Riemann Hypothesis)
of where a certain analytic function has its zeroes dispute the claim?
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