
1. HOMOTOPY, SUSPENSION AND LOOP

We (tend to) only care things up to homotopy. But what is homotopy?

Definition 1.1. Given maps f and g : X → Y, a homotopy h between f and g is a map h : X× I →
Y (I = [0, 1]) such that f (x) = h(x, 0) and g(x) = h(x, 1). We say f and g are homotopic if there
exists a homotopy between them.

This is the defination of homotopy between maps of spaces, the concept can be generalized to
much general cases. The idea is we are doing X cross an interval, or an analog of the notion of
intervals (so up the dimension by 1).

Homotopy is an equivalent relation, the equivalent class of X under this relation is called the
homotopy class of X. The homotopy classes of the (based) maps from S1 (the circle) to a space X
form a group, the first homotopy group of X, denote π1(X). Usually a space’s homotopy type can
be detected by its homotopy groups.

Definition 1.2. Given a space X, the cone on X is the quotient space X × I/ ∼, where (x, 1) ∼
(x′, 1).

Definition 1.3. Given a map f : X → Y, the mapping cone C f is defined to be the quotient space
X× I t f Y/ ∼ with respect to the equivalence relation (x, 0) ∼ (x′, 0), (x, 1) ∼ f (x).

A cone is contractible, so roughly speaking the mapping cone is missing the homotopy informa-
tion of f (X). In a special case where X is a subspace of Y, the mapping cone only see the homotopy
information of Y\X.

What if we make a double-sided cone? It might no longer be contractible! The suspension of
X can be described as the quotient space X × I/ ∼, where (x, 0) ∼ (x′, 0) and (x, 1) ∼ (x′, 1). But
we also have another way to write out the definition.

Exercise 1.4. Show that ΣS1 ∼= S2, deduct ΣSn ∼= Sn+1.

Let X and Y be based spaces, the smash product of X and Y is defined as the quotient X ×
Y/X ∨Y, where X ∨Y is the one point union of X and Y, denote X ∧Y.

Exercise 1.5. Show that S1 ∧ S1 ∼= S2, deduct S1 ∧ Sn ∼= Sn+1.

Definition 1.6. Let X be a based space. The suspension of X is defined as S1 ∧ X, the notation
is ΣX. The loop space of X is the homotopy classes of the based maps [S1, X]∗ equipped with
compact open topology, denote ΩX.

Note that ΩX and π1(X) has the same underlying set, if X is path connected. We will see later
why suspention and loop play an essential rule.

2. SYMMETRIC MONOIDAL CATEGORY, TENSOR HOM ADJUNCTION

Now we come to the most abstract part of math, where we only look at the essense of everything
and try to live in this.

Definition 2.1. A category C consists of
• a collection of objects;
• a collection of arrows between objects;
• a way to compose arrows.
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Note that for every objects, there is an identity arrow between it and itself.

Definition 2.2. A functor F from a category C to a category D is a map sending each object c ∈ C
to an object F(c) ∈ D , and each arrow f : c→ c′ to an arrow F( f ) : F(c)→ F(c′) (or contravariant
case, F( f ) : F(c)← F(c′)) in D , such that

• F preserves identity arrows;
• F preserves compositions.

Example 2.3.

(1) Vect-vector spaces as objects, linear maps as arrows;
(2) Gp-groups as objects, group homomorphisms as arrows;
(3) AbGp-abelian groups as objects, group homomorphisms as arrows;
(4) Top-topological spaces as objects, continuous maps as arrows;
(5) ModR-for a commutative ring R, R-modules as objects, R-module maps as arrows.

Example 2.4.

(1) the (first) homotopy group π1 can be considered as a functor from Top∗ to Gp;
(2) given a ring map R→ S, it is defining a functor from ModR to ModS;
(3) suspension and loop can both be considered as functors from Top∗ to itself.

Exercise 2.5. Verify the suspension and loop are functors.

Not in all categories we can multiply things, yet in those we care a lot, we do.

Definition 2.6. A symmetric monoidal category is a category (C,⊗, I), with bifunctor⊗ : C × C →
C, an object I ∈ C that is called the unit, three natural isomorphisms αa : a⊗ I ∼= a, βa,b : a⊗ b ∼=
b⊗ a, γa,b,c : a⊗ (b⊗ c) ∼= (a⊗ b)⊗ c such that the following is true / diagrams commute:

(1) Commutativity: βa,b ◦ βb,a = id;
(2) Unital (also known as the triangle identity):

a⊗ (I ⊗ c) (a⊗ I)⊗ c

a⊗ (c⊗ I) a⊗ c

γ

1⊗β α⊗1

1⊗α

;

(3) The associativity pentagon: the vertices are the five possible orders to multiply four ele-
ments in binary ways and the edges are one-step associativities;

(4) “C3-equivariant” (also known as the hexagon identity):

a⊗ (b⊗ c) (a⊗ b)⊗ c c⊗ (a⊗ b)

a⊗ (c⊗ b) (a⊗ c)⊗ b (c⊗ a)⊗ b

γ

1⊗β

β

γ

γ β⊗1

.

Definition 2.7. Let (C,⊗, I) be a symmetric monoidal category. A monoid in C is an object M ∈ C
equipped with unit and multiplication maps

η : I → M and µ : M⊗M→ M,
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such that the following diagrams are commutative:

I ⊗M M⊗M M⊗ I

M

η⊗id

α
µ

id⊗η

α
,

(M⊗M)⊗M M⊗ (M⊗M)

M⊗M M⊗M

M

µ⊗id

γ

id⊗µ

µ µ

.

A commutative monoid in C is a monoid M satisfying the addition diagram:

M⊗M M⊗M

M

β

µ µ

Example 2.8. A (commutative) monoid in the category of set is a (commutative) monoid. Here,
the second "monoid" means a group without inverse.

Remark 2.9. Terminology: Sometimes people use the words "monoid" and "algebra" are used
interchangeably to mean the same thing in a symmetric monoidal category. The reason is probably
because a commutative monoid is the same thing as an algebra over the commutative opeard.
They only slightly differ in that "algebra" is used for a general symmetric monoidal category while
"monoid" is used for a Cartesian monoidal category.

However, we point out that an algebra in algebra has two binary operations while an algebra
in topology has only one.

We can consider this "product" as another kind of functor, defined on a product category.

Example 2.10. Let R be a commutative ring. Consider−⊗R− : ModR×ModR → ModR sending
(M, N) to M⊗R N, this is a functor. And (ModR,⊗R, R) is a symmetric monoidal category.

Example 2.11.
(1) (Top,×, ∗)
(2) (Top∗,∧, S0);
(3) (Vect,⊕, k);
(4) (AbGp,⊕, 0);
(5) (AbGp,⊗Z, Z).

Two functors can be inverse of each other, but that is way too strong. Let HomC (−,−) be a
functor from C × C to Set, the resulting set is all the arrows from a selected object to another in
C . The target of this functor doesn’t have to be in Set.

Example 2.12. HomTop∗(X, Y) is a based space equipped with the compact open topology, i.e.
HomTop∗(−,−) is a functor from Top∗ × Top∗ to Top∗.
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Similarly, for a commutative ring R, one can verify that HomModR(M, N) can be given a R-
module structure.

Assuming we have a functor L : C → D and another functor R : D → C between two cate-
gories C and D . We can compare HomC (c, R(d) and HomD (L(c), d) for any c ∈ C and d ∈ D .
This may be thought of as a generalized version of two functors behave like inverses to each other.

Definition 2.13. Inheriting the setting above. L and R are called a pair of adjoint functors (or
often an adjunction) if there is a bijection

HomC (c, R(d) ∼= HomD (L(c), d)

for each c ∈ C and d ∈ D , and for any arrows c→ c′, there is a square

HomC (c, R(d))

��

∼= // HomD (L(c), d)

��
HomC (c′, R(d))

∼= // HomD (L(c′), d)

for any arrows d→ d′, there is a square

HomC (c, R(d))

��

∼= // HomD (L(c), d)

��
HomC (c, R(d′))

∼= // HomD (L(c), d′)

Those square conditions are often denoted natural in c and d.

Example 2.14. This is the celebrated tensor-hom adjunction: Let N be a (R, S)-bimodule, then
−×R N and HomS(N,−) is a pair of adjoint functors. i.e.

HomS(M⊗R N, K) ∼= HomR(M, HomS(N, K))

for any R-module M and S-module K.

Example 2.15. Given−∧X and Map∗(X,−) is a pair of adjunction, deduct that suspension Σ and
loop Ω is a pair of adjunction on the homotopy classes, i.e.

[ΣY, Z]∗ ∼= [Y, ΩZ]∗
This adjunction plays an essential rule in the fundation of spectra.

3. THE EILENBERG-STEENROD AXIOMS, COHOMOLOGY THEORIES AND SPECTRA

Some of us are familiar with the ordinary cohomology groups, others are not. If we squeeze
the essense out of those, i.e. axiomize the good and essential properties they satisfy, we get a very
abstract family of things.

Definition 3.1. Let Top∗ be the category of pointed spaces and pointed maps. A reduced coho-
mology theory h∗ is a collection of contravariant functors and natural equivalences indexed by
integers

hn : Top∗ → AbGp

sn : hn ◦ Σ→ hn−1

satisfying:
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• Homotopy: If f0 ' f1 : X → Y, then f ∗0 = f ∗1 : hn(Y)→ hn(X) for all n ∈ Z.
• Exactness: For every A ⊆ X, we have exact sequence

hn(X ∪ CA)
j∗−→ hn(X)

i∗−→ hn(A)

where i : A
i

↪−→ X is the inclusion and j : X
j

↪−→ X ∪ CA is the canonical inclusion into the
cone of i.

Remark 3.2. Exact means the kernel of the map is the same as the image of the previous one, in
the language above, it is interprated as ker(i∗) = im(j∗).

The cohomology groups of a space is a cohomology theory, and there are more. We can trans-
port the data to a sequal of spaces with links between them via the Brown representibility theorem,
which is literally saying for every n ∈ Z there exists a space Cn such that hn(X) ∼= [X, Cn]∗ natural
in X. Thus we can look at Cns instead of h∗.

Definition 3.3. A spectrum X is a sequence of pointed spaces Xn with structure maps εn : ΣXn →
Xn+1. A function f : X → Y of degree r between two spectra is a sequence of maps fn : Xn → Yn−r
that is strictly compatible with the structure maps.

The structure maps can be given in terms of suspension: ΣXn → Xn+1, or in terms of loop:
Xn → ΩXn+1, via the bridge of Σ−Ω adjunction. the natural equivalences incoded in the axiom
of cohomology theories suggest us, even though a spectrum contains a sequence of spaces, but
essentially, up to homotopy, we should think them as one space.
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