ABSTRACT. Geometry and Complex Numbers

GEOMETRY AND COMPLEX NUMBERS

JERZY DYDAK

CONTENTS

1.	Introduction	2
2.	Solving equations	3
3.	Geometric proofs	4
4.	Stereographic Projection	5
5.	Basic calculations with complex	
numbers		47

Key words and phrases. Complex numbers.

1. INTRODUCTION

2. Solving equations

3. Geometric proofs

4. Stereographic Projection

There are two special projections: one onto the x-axis, the other onto the y-axis. Both are well-known. Using those projections one can define functions sine and cosine. However, there is another projection, less known to students, a projection from a circle to the x-axis. It is called the **stereographic projection**. We will use it to provide geometric interpretations of multiplication, division of real numbers, the tangent function, and basic trigonometric formulae.

6

Problem 4.1. Find the intersection of the line joining (0, 1) and (1, 5) with the *x*-axis.

Hint(s) to 4.1: Find an equation of the line passing through the two points. How does one find its intersection with the x-axis?

Outline(s) of solution(s) to 4.1: A nonvertical line is the graph of a linear function f(x). A function f(x) is called **linear** if the ratio $(f(x_2)-f(x_1))/(x_2-x_1)$ is always constant if $x_2 \neq x_1$. That ratio is the slope m of the geometric line. One can compute m from the data. Now, setting $x_2 = x$ and $x_1 = 0$ gives (f(x)-1)/(x-0) = m as an equation of our line. Its x-intercept is the point such that f(x) = 0, so solve (f(x) - 1)/(x - 0) = m in that case.

Answer to 4.1: −.25

10

Problem 4.2. Find the intersection of the line joining (0, 0, 1) and (1, 1, -1) with the *xy*-plane.

Hint(s) to 4.2: Find an equation of the line passing through the two points. How does one find its intersection with the xy-plane?

Outline(s) of solution(s) to 4.2: A nonvertical line on space is the graph of a linear function f(t). A function f(t) is called **linear** if the ratio $(f(t_2) - f(t_1))/(t_2 - t_1)$ is always constant if $t_2 \neq t_1$. Physically, that constant is the velocity v of a particle traversing our line. One can compute v from the data assuming that at t = 0 the particle is at point (0, 0, 1) and at t = 1 it is at the other point. Now, setting $t_2 = t$ and $t_1 = 0$ gives (f(t) - (0, 0, 1))/(t - 0) = v as an equation of our line. Its xy-intercept is the point t such that the third coordinate of f(t)equals 0, so solve (f(t) - (0, 0, 1))/(t - 0) = vfor such t, then find f(t).

Answer to 4.2: (0.5, 0.5)

14

Problem 4.3. Suppose $b \neq 1$. Show that the line joining (0, 1) and (a, b) intersects the x-axis at $(\frac{a}{1-b}, 0)$.

Hint(s) to 4.3: Find an equation of the line passing through the two points. How does one find its intersection with the x-axis?

Outline(s) of solution(s) to 4.3: A nonvertical line is the graph of a linear function f(x). A function f(x) is called **linear** if the ratio $(f(x_2)-f(x_1))/(x_2-x_1)$ is always constant if $x_2 \neq x_1$. That ratio is the slope m of the geometric line. One can compute m from the data. Now, setting $x_2 = x$ and $x_1 = 0$ gives (f(x)-1)/(x-0) = m as an equation of our line. Its x-intercept is the point such that f(x) = 0, so solve (f(x) - 1)/(x - 0) = m in that case. **Problem 4.4.** Suppose $a \neq 0$ and $b \neq 1$. Show that $\frac{a}{1-b} = \frac{b}{a}$ if (a, b) is on the circle centered at (0, 1/2) with radius r = 1/2.

Hint(s) to 4.4: What does it mean that a point (x, y) lies on the circle centered at (0, 1/2) of radius r = 1/2? Can you write an equation of that circle? Is it equivalent to $\frac{x}{1-y} = \frac{y}{x}$ if $x \neq 0$?

Outline(s) of solution(s) to 4.4: A point (x, y) lies on the circle centered at (0, 1/2) of radius r = 1/2 if its distance to (0, 1/2) is 1/2. Algebraically, it is the same as

$$x^{2} + (y - 1/2)^{2} = (1/2)^{2}.$$

Expanding and simplifying gives

$$x^2 + y^2 - y = 0$$

which is equivalent to $\frac{x}{1-y} = \frac{y}{x}$ if $x \neq 0$.

Problem 4.5. Consider the stereographic projection from the North Pole of the circle centered at (0, 1/2) with radius r = 1/2 onto the *x*-axis. Show that the image of the point with argument $\alpha \neq \pi/2$ is $\tan(\alpha)$.

20

Hint(s) to 4.5:

1. (Algebraic) If a point (x, y) has argument α , how can $\tan(\alpha)$ be expressed using x and y? How does that compare to the stereographic projection of (x, y)?

2. (Geometric) Draw a picture of the stereographic projection from the North Pole N via A = (x, y)to B = (t, 0). Can you calculate all the angles on the picture? What are their tangents?

Outline(s) of solution(s) to 4.5:

1. (Algebraic) If a point (x, y) has argument α , then $\tan(\alpha) = y/x$. The stereographic projection of (x, y) is $\frac{x}{1-y}$ and that equals $\frac{y}{x} = \tan(\alpha)$ by 4.4.

2. (Geometric) Draw a picture of the stereographic projection from the North Pole N via A = (x, y)to B = (t, 0). If α is the argument of A, then the angle $\langle ONB$ equals α . Since $\tan(\langle ONB \rangle) = t$, we are done.

23

Problem 4.6. Consider the stereographic projection from the North Pole of the circle centered at (0, 1/2) with radius r = 1/2 onto the x-axis. Show that one can construct $\frac{-1}{a}$, a > 0, by going straight from (a, 0) to (0, 1) and then turning left via 90 degrees and going straight until the x-axis is met again. **Hint(s) to 4.6**: Draw a picture of the stereographic projection from the North Pole N via B = (x, y) to A = (a, 0). Then draw a line through N perpendicular to NA. Can you calculate all the angles on the picture? What are their tangents?

Outline(s) of solution(s) to 4.6: Draw a picture of the stereographic projection from the North Pole N via B = (x, y) to A = (a, 0). Then draw a line through N perpendicular to NA. Let t be the x-intercept of that line. If α is the argument of B, then the angle $\setminus ONA$ equals α and the angle $\setminus OCN = \alpha$, where C = (t, 0). Since $\tan(\setminus OCN) = -1/t$, we are done.

Problem 4.7. Consider the stereographic projection from the North Pole of the circle centered at (0, 1/2) with radius r = 1/2 onto the *x*-axis. Show that one can construct $\frac{a}{b}$, a, b > 0, by going straight from (a, 0) to the *y*-axis on the line forming the angle $\pi/2 + \beta$ with the *x*-axis, where *b* is the projection of the point with argument β .

26

27

Hint(s) to 4.7: Draw a picture of the stereographic projection from the North Pole N via X = (x, y)to B = (b, 0). Then draw a line through A =(a, 0) parallel to NB. That line forms the angle $\pi/2 + \beta$ with the *x*-axis. Can you calculate its *y*-intercept? Outline(s) of solution(s) to 4.7: Draw a picture of the stereographic projection from the North Pole N via X = (x, y) to B = (b, 0). Then draw a line through A = (a, 0) parallel to NB. That line forms the angle $\pi/2 + \beta$ with the x-axis. Its y-intercept equals a/b.

28

GEOMETRY AND COMPLEX NUMBERS (January 28, 2004) 29

Problem 4.8. Consider the stereographic projection from the North Pole of the circle centered at (0, 1/2) with radius r = 1/2 onto the *x*-axis. Show that one can construct $a \cdot b$, a, b > 0, by going straight from (0, a) to the *x*-axis on the line forming the angle $\pi - \beta$ with the *y*axis, where *b* is the projection of the point with argument β . **Hint(s) to 4.8**: Draw a picture of the stereographic projection from the North Pole N via X = (x, y)to B = (b, 0). Then draw a line through A =(0, a) parallel to NB. That line forms the angle $\pi/2 - \beta$ with the *y*-axis. Can you calculate its *x*-intercept? Outline(s) of solution(s) to 4.8: Draw a picture of the stereographic projection from the North Pole N via X = (x, y) to B = (b, 0). Then draw a line through A = (0, a) parallel to NB. That line forms the angle $\pi/2 - \beta$ with the y-axis. Its x-intercept equals $a \cdot b$.

Problem 4.9. Consider the stereographic projection from the North Pole of the circle centered at (0, 1/2) with radius r = 1/2 onto the *x*-axis. If a > 0, compute the altitudes of the triangle ABC, A = (-a, 0), B = (a, 0), C = (0, 1), in two different ways and conclude that $\sin(2 \cdot \alpha) =$ $2 \cdot \sin(\alpha) \cdot \cos(\alpha)$ for positive angles $\alpha < \pi/2$. Hint(s) to 4.9: Let h = AD be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Can you relate their angles to α , the argument of the point mapped to B by the stereographic projection?

Outline(s) of solution(s) to 4.9: Let h = AD be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Let α be the argument of the point mapped to B by the stereographic projection. The angle $\backslash ACB = 2 \cdot \alpha$, the angle $\backslash ABD = \pi/2 - \alpha$. Therefore $BC = 1/\cos(\alpha)$, $h = NA \cdot \sin(2 \cdot \alpha)$, and $h = AB \cdot \cos(\alpha) = 2\tan(\alpha) \cdot \cos(\alpha) = 2 \cdot \sin(\alpha)$. Comparing the two formulae for h gives $\sin(2 \cdot \alpha) = 2 \cdot \sin(\alpha) \cdot \cos(\alpha)$.

35

Problem 4.10. Consider the stereographic projection from the North Pole of the circle centered at (0, 1/2) with radius r = 1/2 onto the *x*-axis. If a > 0, compute the bases of altitudes of the triangle ABC, A = (-a, 0), B = (a, 0), C = (0, 1), in two different ways and conclude that $\cos(2 \cdot \alpha) = 2 \cdot \cos^2(\alpha) - 1$ for positive angles $\alpha < \pi/2$. Hint(s) to 4.10: Let h = AD be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Can you relate their angles to α , the argument of the point mapped to B by the stereographic projection? Can you compute BD and CDusing both triangles?
37

Outline(s) of solution(s) to 4.10: Let h = AD be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Let α be the argument of the point mapped to B by the stereographic projection. The angle $\langle ACB = 2 \cdot \alpha,$ the angle $\langle ABD = \pi/2 - \alpha$. Therefore $CA = 1/\cos(\alpha)$, so $CD = CA \cdot \cos(2 \cdot \alpha) = \cos(2 \cdot \alpha)/\cos(\alpha)$ and $BD = AB \cdot \sin(\alpha) = 2 \cdot \tan(\alpha) \cdot \sin(\alpha)$. Since CB = BD + DC, one gets $\cos(2 \cdot \alpha) = 1 - 2 \cdot \sin^2(\alpha)$.

JERZY DYDAK

Problem 4.11. Consider the stereographic projection from the North Pole of the circle centered at (0, 1/2) with radius r = 1/2 onto the x-axis. If a, b > 0, compute the altitudes of the triangle ABC, A = (-a, 0), B = (b, 0), C = (0, 1),in two different ways and conclude that $\sin(\alpha + \beta) = \sin(\alpha) \cdot \cos(\beta) + \cos(\alpha) \cdot \sin(\beta)$ for positive angles $\alpha, \beta < \pi/2$. Hint(s) to 4.11: Let h = AD be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Can you relate their angles to β , the argument of the point mapped to B by the stereographic projection and α , the argument of the point mapped to -A by the stereographic projection?

JERZY DYDAK

Outline(s) of solution(s) to 4.11: Let h = AD be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Let β be the argument of the point mapped to B by the stereographic projection. Let α be the argument of the point mapped to -A by the stereographic projection. The angle $\ ACB = \alpha + \beta$, the angle $\ ABD = \pi/2 - \beta$. Therefore $BC = 1/\cos(\alpha)$, $h = NA \cdot \sin(\alpha + \beta)$, and $h = AB \cdot \cos(\beta) = 2\tan(\alpha) \cdot \cos(\beta)$. Comparing the two formulae for h gives $\sin(\alpha + \beta) = \sin(\alpha) \cdot \cos(\beta) + \cos(\alpha) \cdot \sin(\beta)$.

41

Problem 4.12. Consider the stereographic projection from the North Pole of the circle centered at (0, 1/2) with radius r = 1/2 onto the *x*-axis. If a, b > 0, compute the bases of altitudes of the triangle ABC, A = (-a, 0), B = (b, 0), C = (0, 1), in two different ways and conclude that $\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)$ for positive angles $\alpha, \beta < \pi/2$. Hint(s) to 4.12: Let h = AD be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Can you relate their angles to β , the argument of the point mapped to B by the stereographic projection and α , the argument of the point mapped to -A by the stereographic projection?

43

Outline(s) of solution(s) to 4.12: Let h = AD be the altitude of triangle ABC from vertex A onto the side CB. Consider both triangles ADC and ADB. Let β be the argument of the point mapped to B by the stereographic projection. Let α be the argument of the point mapped to -A by the stereographic projection. The angle $\ ACB = \alpha + \beta$, the angle $\ ABD =$ $\pi/2 - \beta$. Therefore $AC = 1/\cos(\alpha), CD =$ $AC \cdot \cos(\alpha + \beta)$, and $DB = AB \cdot \sin(\beta) =$ $(\tan(\alpha) + \tan(\beta)) \cdot \sin(\beta)$. Analyzing CB =CD + DB gives $\cos(\alpha + \beta) = \cos(\alpha) \cdot \cos(\beta) - \beta$ $\sin(\alpha) \cdot \sin(\beta).$

JERZY DYDAK

Problem 4.13. Consider the stereographic projection from the North Pole of the circle centered at (0, 1/2) with radius r = 1/2 onto the *x*-axis. If b > a > 0, consider the intersection *C* of the vertical line x = b with the line passing through the North Pole and perpendicular to the line joining North Pole and (a, 0). Show that $C = (b, 1+a \cdot b)$ and conclude that $\tan(\beta - \alpha) = \frac{\tan(\beta) - \tan(\alpha)}{1 + \tan(\alpha) \cdot \tan(\beta)}$ for positive angles $\alpha < \beta < \pi/2$.

45

Hint(s) to 4.13: Draw a picture of the stereographic projection from the North Pole N via B' =(x, y) to B = (b, 0) and of the stereographic projection from the North Pole N via A' =(x, y) to A = (a, 0). Then draw a line through N perpendicular to NB and mark its intersection C with line x = b. What is the angle between NA and NB in terms of arguments α of A' and β of B'? Do you see that all points N, A, B, and C lie on one circle?

Outline(s) of solution(s) to 4.13: Draw a picture of the stereographic projection from the North Pole N via B' = (x, y) to B = (b, 0) and of the stereographic projection from the North Pole N via A' = (x, y) to A = (a, 0). Then draw a line through N perpendicular to NB and mark its intersection C with line x = b. The angle between NA and NB can be expressed in terms of arguments α of A' and β of B' as $\beta - \alpha$. Since all points N, A, B, and C lie on one circle with diameter NB, the angle between CA and CB is also $\beta - \alpha$. Apply that information to the right triangle ABC.

46

5. Basic calculations with complex Numbers

Problem 5.1. Define complex numbers. What do we mean by $a + b \cdot i$?

Answer to 5.1: Geometrically, a complex number is a point on the plane (a plane with origin). That way of expressing complex numbers is referred to as **Argand diagram**.

Algebraically, a complex number is a pair (a, b)of real numbers. $a + b \cdot i$ is one of possible notations for (a, b). GEOMETRY AND COMPLEX NUMBERS (January 28, 2004) 49 **Problem 5.2.** Define the modulus of a complex numbers z. What are possible notations for modulus of z? Answer to 5.2: Geometrically, the modulus of a complex number z is its distance to the origin of the plane.

Algebraically, the modulus of $|z| = a + b \cdot i$ is $\sqrt{a^2 + b^2}$. |z| is one of possible notations for modulus of z.

50

GEOMETRY AND COMPLEX NUMBERS (January 28, 2004) 51 **Problem 5.3.** Define the argument of a complex numbers $z \neq 0$. What are possible notations for argument of z? Answer to 5.3: The argument of a complex number $z \neq 0$ is the angle from the *x*-axis to *z*. arg(z) is one of possible notations for argument of *z*. **Problem 5.4.** Define the real part of a complex numbers z. What are possible notations for real part of z?

Answer to 5.4: The real part of a complex number z is its x-coordinate. Re(z) is one of possible notations for real part of z.

Algebraically, $Re(a + b \cdot i) = a$.

Geometrically, the function $z \to Re(z)$ is one of the basic projections of the plane, the orthogonal projection onto x-axis. GEOMETRY AND COMPLEX NUMBERS (January 28, 2004) 55 **Problem 5.5.** Define the imaginary part of a complex numbers z. What are possible notations for imaginary part of z? Answer to 5.5: The imaginary part of a complex number z is its y-coordinate. Im(z) is one of possible notations for imaginary part of z.

Algebraically, $Im(a + b \cdot i) = b$.

Geometrically, the function $z \to Im(z)$ is one of the basic projections of the plane, the orthogonal projection onto y-axis. GEOMETRY AND COMPLEX NUMBERS (January 28, 2004) 57 **Problem 5.6.** Define imaginary complex numbers z. Answer to 5.6: z is an imaginary complex number if it is a real multiple of i.

Algebraically, $z = b \cdot i$.

Geometrically, z lies on the y-axis.

GEOMETRY AND COMPLEX NUMBERS (January 28, 2004) 59 **Problem 5.7.** Define the conjugate of a complex number z. What is the geometrical meaning of the conjugate of z?

Answer to 5.7: Let $z = a + b \cdot i$.

Algebraically, $\bar{z} = a - b \cdot i$.

Geometrically, \bar{z} is the reflection of z in the real axis.

GEOMETRY AND COMPLEX NUMBERS (January 28, 2004) 61 **Problem 5.8.** Sketch a picture illustrating addition of complex numbers. **Answer to 5.8**: To draw $z_1 + z_2$ slide vector z_2 on vector z_1 .

GEOMETRY AND COMPLEX NUMBERS (January 28, 2004) 63 **Problem 5.9.** Find $z = (1 + 2 \cdot i) \cdot (1 + 1 \cdot i)$ without using a calculator. **Answer to 5.9**: $z = -1 + 3 \cdot i$

GEOMETRY AND COMPLEX NUMBERS (January 28, 2004) 65 **Problem 5.10.** Express $z = i^{104}$ as $a + b \cdot i$ without using a calculator.

JERZY DYDAK

Hint(s) to 5.10: Is there any pattern in powers of i?

Answer to 5.10: 1

Problem 5.11. Sketch 1 + i. Find and sketch $(1 + i)^2$.

Answer to 5.11: $2 \cdot i$

Problem 5.12. Sketch 1 - i. Find and sketch $(1 - i)^2$.

Answer to 5.12: $-2 \cdot i$

72

Problem 5.13. Express $z = (1+i)^{10}$ as $a+b \cdot i$ without using a calculator.
Hint(s) to 5.13: Is there any pattern in powers of $1 \pm i$?

Answer to 5.13: $z = 0 + 32 \cdot i$

Problem 5.14. Express $z = (1+i)^{103}/(1-i)^{99}$ as $a + b \cdot i$ without using a calculator. **Answer to 5.14**: $z = 0 + 4 \cdot i$

Problems 5.15-5.16 form written Homework 3 due February 16,2004.

Problem 5.15. Let $a = \sqrt{3}$ and $z = (-1 - a \cdot i)/2$. Show $z^2 = \overline{z}$ and $z^3 = 1$ without using a calculator.

JERZY DYDAK

Problem 5.16. Let $a = \sqrt{3}$ and $z = (1 - a \cdot i)/2$. Show $z^2 = -\overline{z}$ and $z^3 = -1$ without using a calculator.

Problem 5.17. Let $a = \sqrt{3}$ and $z = (-1 - a \cdot i)/2$. Compute z^9 without using a calculator.

JERZY DYDAK

Hint(s) to 5.17: Is there any pattern in powers of z?

Answer to 5.17: 1

Problem 5.18. Let $a = \sqrt{3}$ and $z = (1 + a \cdot i)/2$. Compute z^8 without using a calculator.

Hint(s) to 5.18: Is there any pattern in powers of z?

Answer to 5.18: $(-1 - a \cdot i)/2$

MATH DEPT, UNIVERSITY OF TENNESSEE, KNOXVILLE, TN 37996-1300, USA $E\text{-mail}\ address:\ dydak@math.utk.edu$