Skip to main content

Exercises 2.6 Practice Problems

Exercise Group.

For each of the following functions, evaluate at the given input.

Exercise Group.

For each of the following functions, evaluate at the given input.

Exercise Group.

For each of the following functions, evaluate the given input.

21.

Suppose
\begin{equation*} g(x) = \begin{cases}\sqrt{x} \amp x \gt 2 \\ x^2 \amp -3 \lt x \le 2 \\ x+3 \amp x \le -3 \end{cases} \end{equation*}
We want to evaluate each of the following:
  1. \(\displaystyle g(0)\)
  2. \(\displaystyle g(-5)\)
  3. \(\displaystyle g(10)\)
  4. \(\displaystyle g(2)\)
Answer.
  1. \(\displaystyle g(0)=0\)
  2. \(\displaystyle g(-5)= -2\)
  3. \(\displaystyle g(10)= \sqrt{10}\)
  4. \(\displaystyle g(2) = 4\)

22.

Suppose
\begin{equation*} h(t) = \begin{cases}\frac{1}{2}t \amp t \ge 3 \\ t^3 \amp 0 \lt t \lt 3 \\ t+3 \amp t \le 0 \end{cases} \end{equation*}
We want to evaluate each of the following:
  1. \(\displaystyle h(1)\)
  2. \(\displaystyle h(3)\)
  3. \(\displaystyle h(0)\)
  4. \(\displaystyle h(-3)\)
Answer.
  1. \(\displaystyle h(1) = 1\)
  2. \(\displaystyle h(3) = \frac{3}{2}\)
  3. \(\displaystyle h(0) = 3\)
  4. \(\displaystyle h(-3) = 0\)

23.

Suppose
\begin{equation*} f(t) = \begin{cases}\frac{1}{3}t \amp t \ge 5 \\ \sqrt{t} \amp 1 \lt t \lt 5 \\ t \amp t \le 1 \end{cases} \end{equation*}
We want to evaluate each of the following:
  1. \(\displaystyle f(1)\)
  2. \(\displaystyle f(5)\)
  3. \(\displaystyle f(0)\)
  4. \(\displaystyle f\left(\frac{3}{2}\right)\)
Answer.
  1. \(\displaystyle f(1) = 1\)
  2. \(\displaystyle f(5) = \frac{5}{3}\)
  3. \(\displaystyle f(0) = 0\)
  4. \(\displaystyle f\left(\frac{3}{2}\right) = \sqrt{\frac{3}{2}}\)

24.

Suppose
\begin{equation*} f(x) = \begin{cases}\frac{1}{x} \amp x \gt 0 \\ x \amp x=0 \\ -\frac{1}{x} \amp x \lt 0 \end{cases} \end{equation*}
We want to evaluate each of the following:
  1. \(\displaystyle f(-1)\)
  2. \(\displaystyle f(0)\)
  3. \(\displaystyle f(2)\)
  4. \(\displaystyle f\left(\frac{1}{2}\right)\)
Answer.
  1. \(\displaystyle f(-1) = 1\)
  2. \(\displaystyle f(0) = 0\)
  3. \(\displaystyle f(2) = \frac{1}{2}\)
  4. \(\displaystyle f\left(\frac{1}{2}\right) = 2\)

25.

Suppose
\begin{equation*} f(x) = \begin{cases}\frac{1}{2} \amp x \gt 10 \\ 2x \amp x=10 \\ -1 \amp x \lt 10 \end{cases} \end{equation*}
We want to evaluate each of the following:
  1. \(\displaystyle f(-10)\)
  2. \(\displaystyle f(0)\)
  3. \(\displaystyle f(10)\)
  4. \(\displaystyle f(20)\)
Answer.
  1. \(\displaystyle f(-10)=-1\)
  2. \(\displaystyle f(0)=-1\)
  3. \(\displaystyle f(10)=20\)
  4. \(\displaystyle f(20)=\frac{1}{2}\)

28.

Suppose \(f(x)\) is given in the table below:
Table 2.6.1.
\(x\) \(f(x)\)
\(-3\) \(1\)
\(0\) \(2\)
\(3\) \(-7\)
\(6\) \(/pi\)
\(\frac{1}{3}\) \(4.31\)
Evaluate each of the following:
  1. \(\displaystyle f(-3)\)
  2. \(\displaystyle f(0)\)
  3. \(\displaystyle f(3)\)
  4. \(\displaystyle f(6)\)
  5. \(\displaystyle f(\frac{1}{3})\)
Answer.
  1. \(\displaystyle f(-3)=1\)
  2. \(\displaystyle f(0)=2\)
  3. \(\displaystyle f(3)=-7\)
  4. \(\displaystyle f(6)=\pi\)
  5. \(\displaystyle f(\frac{1}{3})=4.31\)

29.

Suppose \(f(t)\) is given in the table below:
Table 2.6.2.
\(t\) \(f(t)\)
\(0\) \(1\)
\(1\) \(2\)
\(2\) \(3\)
\(3\) \(4\)
\(4\) \(5\)
Evaluate each of the following:
  1. \(\displaystyle f(0)\)
  2. \(\displaystyle f(1)\)
  3. \(\displaystyle f(2)\)
  4. \(\displaystyle f(3)\)
  5. \(\displaystyle f(4)\)
Answer.
  1. \(\displaystyle f(0)=1\)
  2. \(\displaystyle f(1)=2\)
  3. \(\displaystyle f(2)=3\)
  4. \(\displaystyle f(3)=4\)
  5. \(\displaystyle f(4)=5\)

30.

Suppose \(f(x)\text{,}\) \(g(x)\text{,}\) and \(h(x)\) are given in the table below:
Table 2.6.3.
x f(x) g(x) h(x)
0 9 4 1
1 -2 5.5 -3
2 6 6 6
3 7 0 8
4 -1 8 -4
Evaluate each of the following:
  1. \(\displaystyle h(0)\)
  2. \(\displaystyle f(1)\)
  3. \(\displaystyle g(2)\)
  4. \(\displaystyle f(3)\)
  5. \(\displaystyle h(4)\)
Answer.
  1. \(\displaystyle h(0)=1\)
  2. \(\displaystyle f(1)=-2\)
  3. \(\displaystyle g(2)=6\)
  4. \(\displaystyle f(3)=7\)
  5. \(\displaystyle h(4)=-4\)

31.

Suppose \(m(x)\) is given in the table below:
Table 2.6.4.
x 1 3 5 7 9
m(x) 6 2 -1 -5 -8
Evaluate each of the following:
  1. \(\displaystyle m(5)\)
  2. \(\displaystyle m(1)\)
  3. \(\displaystyle m(9)\)
  4. \(\displaystyle m(3)\)
  5. \(\displaystyle m(7)\)
Answer.
  1. \(\displaystyle m(5)=-1\)
  2. \(\displaystyle m(1)=6\)
  3. \(\displaystyle m(9)=-8\)
  4. \(\displaystyle m(3)=2\)
  5. \(\displaystyle m(7)=-5\)

Exercise Group.

Suppose \(f(x)= 3x-3\) and \(g(x)\) is given in the graph below:

Exercise Group.

Suppose \(f(x)= x\) and \(g(x)\) is given in the table below:
Table 2.6.5.
x 1 2 3 4 5
g(x) 6 4 -1 7 0

Exercise Group.

Suppose \(g(x)\) is given in the graph below and \(h(x)\) is given in the table below:
Table 2.6.6.
x 0 2 4 6 8
h(x) 2 3 9 1 4

Exercise Group.

Suppose \(f(x)\) is given in the table below and \(g(x)=\frac{1}{2}x+2\text{:}\)
Table 2.6.7.
\(x\) \(f(x)\)
\(0\) \(2\)
\(1\) \(4\)
\(2\) \(6\)
\(3\) \(8\)
\(4\) \(10\)

Exercise Group.

Suppose \(f(x)= 4x-8\text{.}\)

Exercise Group.

Suppose \(g(x)\) is given in the graph below.

Exercise Group.

Suppose \(f(x)\) is given in the table below.
Table 2.6.8.
\(x\) \(f(x)\)
\(1\) \(3\)
\(2\) \(6\)
\(3\) \(9\)
\(4\) \(12\)
\(5\) \(15\)

Exercise Group.

Suppose \(g(x)\) is given in the graph below.

Exercise Group.

Suppose \(g(x)=(x-1)^2\) .