Suppose we want to simplify the following expression:
\begin{equation*}
\frac{8+\sqrt{5(2)+6}}{3^2-5}
\end{equation*}
The first thing we need to do is anything inside of a Group. Since we have a fraction, we will deal with the top and bottom of the fraction separately, then divide them. Since the top of a fraction has a root
inside of it, we will start with that. Within each group, we follow the order of operations, then move our way out to the next group, following the order of operations again.
\begin{align*}
\frac{8+\sqrt{{\color{red}{5(2)}}+6}}{3^2-5}\amp= \frac{8+\sqrt{{\color{red}{10}}+6}}{3^2-5}\\
\frac{8+\sqrt{\color{red}{10+6}}}{3^2-5}\amp= \frac{8+\sqrt{\color{red}{16}}}{3^2-5}\\
\frac{8+{\color{red}{\sqrt{16}}}}{3^2-5}\amp= \frac{8+{\color{red}{4}}}{3^2-5}\\
\frac{\color{red}{8+4}}{3^2-5}\amp= \frac{\color{red}{12}}{3^2-5}\\
\frac{12}{{\color{red}{3^2}}-5}\amp= \frac{12}{{\color{red}{9}}-5}\\
\frac{12}{\color{red}{9-5}}\amp=\frac{12}{\color{red}{4}}\\
\frac{12}{4}\amp=3
\end{align*}